login
A061719
a(n) = Product_{k=0...n} (k!^3).
2
1, 1, 8, 1728, 23887872, 41278242816000, 15407021574586368000000, 1972469516114225950359552000000000, 129292064547357027522197559428775936000000000000
OFFSET
0,3
LINKS
FORMULA
a(n) = a(n-1)*A000442(n). - R. J. Mathar, Sep 26 2020
From Vaclav Kotesovec, Nov 23 2023: (Start)
a(n) = A000178(n)^3.
a(n) ~ (2*Pi)^(3*n/2 + 3/2) * n^(3*n^2/2 + 3*n + 5/4) / (A^3 * exp(9*n^2/4 + 3*n - 1/4)), where A is the Glaisher-Kinkelin constant A074962. (End)
MATHEMATICA
Table[Product[k!^3, {k, 0, n}], {n, 0, 10}] (* Vaclav Kotesovec, Nov 23 2023 *)
PROG
(PARI) for(n=0, 11, print(prod(k=1, n, factorial(k)^3)))
(PARI) { for (n=0, 27, write("b061719.txt", n, " ", prod(k=2, n, k!^3)) ) } \\ Harry J. Smith, Jul 26 2009
CROSSREFS
Cf. A000178.
Sequence in context: A295023 A017295 A154713 * A050642 A050648 A292695
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 20 2001
EXTENSIONS
Terms corrected according to Jason Earls's instructions by Harry J. Smith, Jul 26 2009
STATUS
approved