login
Generalized Bell numbers.
1

%I #21 Jul 25 2024 15:32:53

%S 1,27,864,36000,1944000,133358400,11379916800,1185137049600,

%T 148142131200000,21908575180800000,3785801791242240000,

%U 756127866850836480000,172901238886557941760000,44887821634010234880000000,13132894100921851576320000000,4301460581188603786297344000000

%N Generalized Bell numbers.

%H J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/SIXDENIERS/bell.html">Extended Bell and Stirling Numbers From Hypergeometric Exponentiation</a>, J. Integer Seqs. Vol. 4 (2001), #01.1.4.

%F a(n) = (n+1)!^2*(n+1)n/8. - _Oleksandr Kulkov_, Oct 10 2022

%t Table[((n+1)!)^2 (n+1) n/8,{n,20}] (* _Harvey P. Dale_, Jul 25 2024 *)

%Y First subdiagonal of A061692.

%K nonn

%O 1,2

%A _N. J. A. Sloane_, Jun 19 2001

%E a(8)-a(16) from _Alois P. Heinz_, Sep 10 2019