login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061687 Generalized Bell numbers. 3
1, 1, 33, 8506, 9483041, 33056715626, 293327384637282, 5747475089121405893, 224054040415856117594913, 16044797009828490454609378642, 1981736776623437001042672440089658, 401147408702290404750740714717055504773, 127573929384655691416638350563783440408133922 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..117

J.-M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.

MAPLE

a:= proc(n) option remember; `if`(n=0, 1,

      add(binomial(n, k)^6*(n-k)*a(k)/n, k=0..n-1))

    end:

seq(a(n), n=0..15); # Alois P. Heinz, Nov 07 2008

MATHEMATICA

a[n_] := a[n] = If[n == 0, 1, Sum[Binomial[n, k]^6*(n-k)*a[k]/n, {k, 0, n-1}]]; Table[a[n], {n, 0, 15}] (* Jean-Fran├žois Alcover, Mar 19 2014, after Alois P. Heinz *)

CROSSREFS

Column k=6 of A275043.

Sequence in context: A099827 A269793 A060705 * A116056 A232148 A229845

Adjacent sequences:  A061684 A061685 A061686 * A061688 A061689 A061690

KEYWORD

nonn

AUTHOR

N. J. A. Sloane, Jun 18 2001

EXTENSIONS

More terms from Alois P. Heinz, Nov 07 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 14 19:27 EST 2019. Contains 329987 sequences. (Running on oeis4.)