

A061687


Generalized Bell numbers.


3



1, 1, 33, 8506, 9483041, 33056715626, 293327384637282, 5747475089121405893, 224054040415856117594913, 16044797009828490454609378642, 1981736776623437001042672440089658, 401147408702290404750740714717055504773, 127573929384655691416638350563783440408133922
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

0,3


LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..117
J.M. Sixdeniers, K. A. Penson and A. I. Solomon, Extended Bell and Stirling Numbers From Hypergeometric Exponentiation, J. Integer Seqs. Vol. 4 (2001), #01.1.4.


MAPLE

a:= proc(n) option remember; `if`(n=0, 1,
add(binomial(n, k)^6*(nk)*a(k)/n, k=0..n1))
end:
seq(a(n), n=0..15); # Alois P. Heinz, Nov 07 2008


MATHEMATICA

a[n_] := a[n] = If[n == 0, 1, Sum[Binomial[n, k]^6*(nk)*a[k]/n, {k, 0, n1}]]; Table[a[n], {n, 0, 15}] (* JeanFrançois Alcover, Mar 19 2014, after Alois P. Heinz *)


CROSSREFS

Column k=6 of A275043.
Sequence in context: A099827 A269793 A060705 * A116056 A232148 A229845
Adjacent sequences: A061684 A061685 A061686 * A061688 A061689 A061690


KEYWORD

nonn


AUTHOR

N. J. A. Sloane, Jun 18 2001


EXTENSIONS

More terms from Alois P. Heinz, Nov 07 2008


STATUS

approved



