

A061645


a(n) is the number of divisors of nth even perfect number.


13



4, 6, 10, 14, 26, 34, 38, 62, 122, 178, 214, 254, 1042, 1214, 2558, 4406, 4562, 6434, 8506, 8846, 19378, 19882, 22426, 39874, 43402, 46418, 88994, 172486, 221006, 264098, 432182, 1513678, 1718866, 2515574, 2796538, 5952442, 6042754, 13945186, 26933834
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

The number of divisors of nth perfect number that are powers of 2 is equal to a(n)/2, assuming there are no odd perfect numbers. The number of divisors of nth perfect number that are multiples of nth Mersenne prime A000668(n) is also equal to a(n)/2, assuming there are no odd perfect numbers. (See A000043).  Omar E. Pol, Feb 28 2008
The nth even perfect number A000396(n) = 2^(p1)*P with Mersenne prime P = 2^p1, p = A000043(n), has obviously the 2p divisors { 1, 2, 2^2, ..., 2^(p1) } U { P, 2*P, ..., 2^(p1)*P }.  M. F. Hasler, Dec 10 2018


LINKS

Ivan Panchenko, Table of n, a(n) for n = 1..47
Omar E. Pol, Los nĂºmeros perfectos, (in Spanish).


FORMULA

a(n) = A000005(A000396(n)).
a(n) = floor{log_2(A000396(n))} + 2.  Lekraj Beedassy, Aug 21 2004
a(n) = 2*A000043(n).  M. F. Hasler, Dec 05 2018


EXAMPLE

8128 = 2*2*2*2*2*2*127 with 14 divisors.


MATHEMATICA

2 * Array[MersennePrimeExponent, 45] (* Amiram Eldar, Dec 10 2018 *)


PROG

(PARI) A061645(n)=2*A000043(n) \\ with A000043(n)=[...][n], the dots being replaced by DATA from A000043.  M. F. Hasler, Dec 05 2018


CROSSREFS

Cf. A000005, A000396, A000043.
Cf. A000668.
Sequence in context: A000066 A266730 A241160 * A188592 A188586 A084372
Adjacent sequences: A061642 A061643 A061644 * A061646 A061647 A061648


KEYWORD

nonn


AUTHOR

Labos Elemer, Jun 14 2001


EXTENSIONS

Definition changed (inserting the word "even") by Ivan Panchenko, Apr 16 2018
a(38)a(39) from Ivan Panchenko, Apr 16 2018


STATUS

approved



