login
The smallest difference of an increasing arithmetic progression of n primes with the minimal possible first term (A007918(n)).
9

%I #31 Nov 14 2019 16:38:00

%S 0,1,2,6,6,30,150,1210230,32671170,224494620,1536160080,1482708889200,

%T 9918821194590,266029822978920,266029822978920,11358256064006271420,

%U 341976204789992332560,128642760444772214170530,2166703103992332274919550

%N The smallest difference of an increasing arithmetic progression of n primes with the minimal possible first term (A007918(n)).

%C Apart from the initial term, does this sequence coincide with A113461? - _N. J. A. Sloane_, Sep 22 2007

%H Jens Kruse Andersen, <a href="http://primerecords.dk/aprecords.htm">Records for primes in arithmetic progression</a>

%H Jaroslaw Wroblewski, <a href="http://groups.yahoo.com/group/primenumbers/message/25033">Re: AP19 starting with 19</a>, Yahoo group "primenumbers", Apr 10 2013.

%H Jaroslaw Wroblewski, Mike Oakes, Jens Kruse Andersen, <a href="/A061558/a061558.txt">AP19 starting with 19</a>, digest of 6 messages in primenumbers Yahoo group, Feb 25 - Apr 10, 2013.

%H <a href="/index/Pri#primes_AP">Index entries for sequences related to primes in arithmetic progressions</a>

%e For n = 10, the smallest difference a(10) = 224494620 with the first term 11 (= A007918(10)) producing an arithmetic progression of 10 primes.

%Y Cf. A007918 (initial terms), A120302 (last terms), A130791 (triangle).

%K nonn,hard

%O 1,3

%A Gennady Gusev, May 17, 2001

%E a(16) and a(17) from P. Carmody. - _Gennady Gusev_, Oct 07 2005

%E a(0) deleted by _N. J. A. Sloane_, Sep 22 2007

%E a(18) from _Gennady Gusev_, Oct 31 2012

%E a(19) from _Wojciech Izykowski_, Apr 11 2013