%I #40 Dec 15 2017 17:35:03
%S 15,105,315,693,1287,2145,3315,4845,6783,9177,12075,15525,19575,24273,
%T 29667,35805,42735,50505,59163,68757,79335,90945,103635,117453,132447,
%U 148665,166155,184965,205143,226737,249795,274365,300495,328233,357627
%N a(n) = (2n+1)*(2n+3)*(2n+5).
%C sum(1/a(k), k=0..n) = 1/12 - 1/((8*n+12)*(2*n+5)). Jolley equation 209 (offset adjusted). - _Gary Detlefs_, Sep 20 2011
%D L. B. W. Jolley, "Summation of Series", Dover Publications, 1961, p. 40
%H Harry J. Smith, <a href="/A061550/b061550.txt">Table of n, a(n) for n = 0..1000</a>
%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).
%F a(n) = A162540(n)/3.
%F 1/15 + 1/105 + 1/315...= 1/12 [Jolley, eq. 209]
%F sum_{i=0..n-1} a(i) = A196506(n), partial sums [Jolley eq (43)]. - _R. J. Mathar_, Mar 24 2011
%F sum_{i=0..infinity} (-1)^i/a(i) = Pi/8-1/3 = 0.0593657... [Jolley eq 240]
%F a(n)=(-1)^(n+1)*(4*n^2+12*n+7)/Integral_{x=0..Pi/2} (cos((2*n+3)*x))*(sin(x))^2 dx. - _Francesco Daddi_, Aug 03 2011
%F G.f. ( 15+45*x-15*x^2+3*x^3 ) / (x-1)^4. - _R. J. Mathar_, Oct 03 2011
%p For n from 0 to 100 do (2*n+1)*(2*n+3)*(2*n+5) end do;
%t f[n_] := n/GCD[n, 4]; Table[ f[n] f[n + 2] f[n + 4], {n, 1, 70, 2}] (* _Robert G. Wilson v_, Jan 14 2011 *)
%t Times@@@(#+{1,3,5}&)/@(2Range[0,35]) (* _Harvey P. Dale_, Feb 13 2011 *)
%t Table[(2*n + 1)*(2*n + 3)*(2*n + 5), {n,35}] (* _T. D. Noe_, Feb 13 2011 *)
%o (PARI) { for (n=0, 1000, write("b061550.txt", n, " ", (2*n + 1)*(2*n + 3)*(2*n + 5)) ) } \\ _Harry J. Smith_, Jul 24 2009
%Y Cf. A005408.
%K easy,nonn
%O 0,1
%A _Jason Earls_, Jun 12 2001
%E Better description and more terms from Larry Reeves (larryr(AT)acm.org), Jun 19 2001