login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061506 a(n) = lcm(6n+2, 6n+4, 6n+6). 1
12, 120, 1008, 1320, 5460, 4896, 15960, 12144, 35100, 24360, 65472, 42840, 109668, 68880, 170280, 103776, 249900, 148824, 351120, 205320, 476532, 274560, 628728, 357840, 810300, 456456, 1023840, 571704, 1271940, 704880, 1557192, 857280, 1882188, 1030200 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

LINKS

Colin Barker, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (0,4,0,-6,0,4,0,-1).

FORMULA

G.f.: (120*x^6 + 336*x^5 + 1500*x^4 + 840*x^3 + 960*x^2 + 120*x + 12)/((x-1)^4*(x+1)^4). - Maksym Voznyy (voznyy(AT)mail.ru), Jul 27 2009

a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8), a(0)=12, a(1)=120, a(2)=1008, a(3)=1320, a(4)=5460, a(5)=4896, a(6)=15960, a(7)=12144. - Harvey P. Dale, Oct 22 2012

From Colin Barker, Mar 13 2017: (Start)

a(n) = 6*(3*n + 1)*(3*n + 2)*(n + 1) for n even.

a(n) = 3*(3*n + 1)*(3*n + 2)*(n + 1) for n odd.

(End)

(MAGMA) [Lcm([6*n+2, 6*n+4, 6*n+6]): n in [0..35]]; // Vincenzo Librandi, Mar 18 2018

EXAMPLE

lcm(2, 4, 6) = 12; lcm(8, 10, 12) = 120.

MATHEMATICA

Table[LCM@@(6n+{2, 4, 6}), {n, 0, 40}] (* or *) LinearRecurrence[ {0, 4, 0, -6, 0, 4, 0, -1}, {12, 120, 1008, 1320, 5460, 4896, 15960, 12144}, 40] (* Harvey P. Dale, Oct 22 2012 *)

PROG

(PARI) Vec(12*(1 + 10*x + 80*x^2 + 70*x^3 + 125*x^4 + 28*x^5 + 10*x^6) / ((1 - x)^4*(1 + x)^4) + O(x^50)) \\ Colin Barker, Mar 13 2017

CROSSREFS

Cf. A005843.

Sequence in context: A009050 A067358 A268634 * A059155 A012443 A012274

Adjacent sequences:  A061503 A061504 A061505 * A061507 A061508 A061509

KEYWORD

easy,nonn

AUTHOR

Jason Earls, Jun 12 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 19 12:35 EDT 2019. Contains 325159 sequences. (Running on oeis4.)