login
A061495
a(n) = lcm(3n+1, 3n+2, 3n+3).
1
6, 60, 504, 660, 2730, 2448, 7980, 6072, 17550, 12180, 32736, 21420, 54834, 34440, 85140, 51888, 124950, 74412, 175560, 102660, 238266, 137280, 314364, 178920, 405150, 228228, 511920, 285852, 635970, 352440, 778596, 428640, 941094, 515100
OFFSET
0,1
LINKS
FORMULA
If n is odd, then all three factors are mutually coprime, so lcm = (3n+1)(3n+2)(3n+3), else one half that expression. - Christopher Carl Heckman, Sep 29 2004
Empirical g.f.: 6*(10*x^6+28*x^5+125*x^4+70*x^3+80*x^2+10*x+1) / ((x-1)^4*(x+1)^4). - Colin Barker, Feb 25 2013
EXAMPLE
a(0) = lcm(1,2,3) = 6; a(1) = lcm(4,5,6) = 60; etc.
MATHEMATICA
Table[LCM@@(3n+{1, 2, 3}), {n, 0, 40}] (* Harvey P. Dale, Dec 23 2022 *)
PROG
(PARI) A061495(n)=lcm(3*n+1, lcm(3*n+2, 3*n+3))
(PARI) { for (n=0, 1000, write("b061495.txt", n, " ", lcm(3*n+1, lcm(3*n+2, 3*n+3))) ) } \\ Harry J. Smith, Jul 23 2009
CROSSREFS
Sequence in context: A269760 A043033 A179711 * A220411 A248217 A102232
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Jun 12 2001
EXTENSIONS
More terms from several contributors.
STATUS
approved