login
A061467
Remainder when the larger of n and its reverse is divided by the smaller.
3
0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 9, 5, 13, 6, 13, 3, 9, 15, 0, 9, 0, 9, 18, 2, 10, 18, 26, 5, 0, 5, 9, 0, 9, 18, 27, 36, 7, 15, 0, 13, 18, 9, 0, 9, 18, 27, 36, 45, 0, 6, 2, 18, 9, 0, 9, 18, 27, 36, 0, 13, 10, 27, 18, 9, 0, 9, 18, 27, 0, 3, 18, 36, 27, 18, 9, 0, 9, 18, 0, 9, 26, 7, 36, 27
OFFSET
0,13
COMMENTS
a(n)=0 if n is in A002113, A008919 or A118959. - Robert Israel, Jul 18 2019
LINKS
EXAMPLE
a(12)=9 since 21/12 = 1 with remainder 9.
MATHEMATICA
l := {} For[i = 1, i < 100, i++, x := FromDigits[Reverse[IntegerDigits[i]]]; If[x >= i, AppendTo[l, Mod[x, i]], AppendTo[l, Mod[i, x]]]] l (* Jake Foster, Jun 05 2008 *)
rln[n_]:=Module[{r=IntegerReverse[n]}, If[r>n, Mod[r, n], Mod[n, r]]]; Join[ {0}, Array[rln, 90]] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Apr 03 2016 *)
PROG
(PARI) { for (n=0, 1000, x=n; r=0; while (x>0, d=x-10*(x\10); x\=10; r=r*10 + d); p=max(n, r); q=min(n, r); write("b061467.txt", n, " ", p%q) ) } \\ Harry J. Smith, Jul 23 2009
(Haskell)
a061467 0 = 0
a061467 n = mod (max n n') (min n n') where n' = a004086 n
-- Reinhard Zumkeller, Dec 31 2013
CROSSREFS
KEYWORD
base,easy,nice,nonn
AUTHOR
Erich Friedman, Jun 16 2001
STATUS
approved