login
This site is supported by donations to The OEIS Foundation.

 

Logo

The OEIS is looking to hire part-time people to help edit core sequences, upload scanned documents, process citations, fix broken links, etc. - Neil Sloane, njasloane@gmail.com

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061446 Primitive part of Fibonacci(n). 24
1, 1, 2, 3, 5, 4, 13, 7, 17, 11, 89, 6, 233, 29, 61, 47, 1597, 19, 4181, 41, 421, 199, 28657, 46, 15005, 521, 5777, 281, 514229, 31, 1346269, 2207, 19801, 3571, 141961, 321, 24157817, 9349, 135721, 2161, 165580141, 211, 433494437, 13201, 109441 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,3

COMMENTS

Fib(n) = A000045(n) = Prod(a(k), k divides n), Lucas(n) = A000204(n) = Prod(a(k), k divides 2n and 2^m|k iff 2^m|2n) (e.g., Lucas(4) = 7 = a(8), Lucas(6) = 18 = a(12)*a(4)). - Len Smiley, Nov 11 2001

A 2001 Iranian Mathematical Olympiad question shows such a sequence exists whenever gcd(a(m),a(n)) = a(gcd(m,n)).

The problem of the characterization of the family of all GCD-morphic sequences F, i.e., F such that GCD(F(m),F(n)) = F(GCD(m,n)), was posed by A. K. Kwasniewski (GCD-morphic Problem). Dziemianczuk and Bajguz (2008) showed that any GCD-morphic sequence is coded by a certain natural number-valued sequence. - Maciej Dziemianczuk, Jan 15 2009

This is the LCM-transform of the Fibonacci numbers (cf. Nowicki). - N. J. A. Sloane, Jan 02 2016

REFERENCES

Rohit Nagpal, A Snowden, The module theory of divided power algebras, arXiv preprint arXiv:1606.03431, 2016

LINKS

T. D. Noe, Table of n, a(n) for n = 1..1000

N. Bliss, B. Fulan, S. Lovett, and J. Sommars, Strong Divisibility, Cyclotomic Polynomials, and Iterated Polynomials, Amer. Math. Monthly, 120 (2013), 519-536.

John Brillhart, Peter L. Montgomery and Robert D. Silverman, Tables of Fibonacci and Lucas factorizations, Math. Comp. 50 (1988), pp. 251-260, S1-S15. Math. Rev. 89h:11002.

C. K. Caldwell, Lucas Aurifeuillian primitive part

R. D. Carmichael, On the numerical factors of the arithmetic forms alpha*n+-beta*n, Annals of Math., 2nd ser., 15 (1/4) (1913/14) 30-48.

M. Dziemianczuk and W. Bajguz, On GCD-morphic sequences, arXiv:0802.1303 [math.CO], 2008.

A. K. Kwasniewski, Cobweb posets as noncommutative prefabs, Adv. Stud. Contemp. Math. vol.14 (1) 2007. pp. 37-47.

A. Nowicki, Strong divisibility and LCM-sequences, arXiv:1310.2416 [math.NT], 2013.

A. Nowicki, Strong divisibility and LCM-sequences, Am. Math. Mnthly 122 (2015), 958-966.

FORMULA

Let r=(1+sqrt(5))/2. For n>2, the primitive part of F(n)=(r^n-(-1/r)^n)/sqrt(5) is Phi_n(-r^2)/r^phi(n) where Phi_n is n-th cyclotomic polynomial and phi is Euler's totient function A000010.

a(n) = Prod(Fib(d)^mu(n/d), d|n), where mu = A008683 (Bliss, Fulan, Lovett, Sommars, eq. (7)). - Jonathan Sondow, Jun 11 2013

a(n) = lcm(Fib(1),Fib(2),...,Fib(n))/lcm(Fib(1),Fib(2),...,Fib(n-1)). - Thomas Ordowski, Aug 03 2015

MAPLE

N:= 200; # to get a(1) to a(N)

L[0]:= 1:

for i from 1 to N do L[i]:=ilcm(L[i-1], combinat:-fibonacci(i)) od:

seq(L[i]/L[i-1], i=1..N); # Robert Israel, Aug 03 2015

MATHEMATICA

t={1}; Do[f=Fibonacci[n]; Do[f=f/GCD[f, t[[d]]], {d, Most[Divisors[n]]}]; AppendTo[t, f], {n, 2, 100}]; t

PROG

(PARI) a(n)=my(d=divisors(n)); fibonacci(n)/lcm(apply(fibonacci, d[1..#d-1])) \\ Charles R Greathouse IV, Oct 06 2016

CROSSREFS

Cf. A008683, A061447, A061254, A061445, A061442, A061443, A105602, A126025, A126069.

Sequence in context: A101409 A271862 A131401 * A280690 A240000 A193770

Adjacent sequences:  A061443 A061444 A061445 * A061447 A061448 A061449

KEYWORD

nonn,changed

AUTHOR

David Broadhurst, Jun 10 2001

EXTENSIONS

More terms from Vladeta Jovovic, Nov 09 2001

Edited by N. J. A. Sloane at the suggestion of Andrew Plewe, May 29 2007

Edited by Charles R Greathouse IV, Oct 28 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 28 16:22 EDT 2017. Contains 287241 sequences.