login
A061433
Largest n-digit square.
9
9, 81, 961, 9801, 99856, 998001, 9998244, 99980001, 999950884, 9999800001, 99999515529, 999998000001, 9999995824729, 99999980000001, 999999961946176, 9999999800000001, 99999999989350756, 999999998000000001
OFFSET
1,1
COMMENTS
When (if ever) does this differ from A069659?
Trivially, 81 is both a square and a fourth power. Assuming my program works, there are no differences in the first 1500 terms. - Hans Havermann, Aug 06 2006
FORMULA
a(n) = (ceiling(10^(n/2)) - 1)^2. - Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 30 2003
EXAMPLE
a(4) = 9801 = 99^2 has 4 digits while 100^2 = 10000 has 5 digits.
MAPLE
A061433 := n->(ceil(10^(n/2))-1)^2;
MATHEMATICA
Table[Floor[Sqrt[10^n-1]]^2, {n, 20}] (* Harvey P. Dale, Aug 21 2014 *)
PROG
(Python)
from math import isqrt
def A061433(n): return isqrt(10**n-1)**2 # Chai Wah Wu, Feb 20 2023
CROSSREFS
Cf. A061432.
Sequence in context: A180737 A068881 A104266 * A069659 A271556 A368446
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, May 03 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001
STATUS
approved