login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Geometric mean of the digits = 3. In other words, the product of the digits is = 3^k where k is the number of digits.
7

%I #10 Jan 19 2023 01:41:52

%S 3,19,33,91,139,193,319,333,391,913,931,1199,1339,1393,1919,1933,1991,

%T 3139,3193,3319,3333,3391,3913,3931,9119,9133,9191,9313,9331,9911,

%U 11399,11939,11993,13199,13339,13393,13919,13933,13991,19139,19193

%N Geometric mean of the digits = 3. In other words, the product of the digits is = 3^k where k is the number of digits.

%H Reinhard Zumkeller, <a href="/A061427/b061427.txt">Table of n, a(n) for n = 1..10000</a>

%e 319 is a term as the geometric mean of digits is (3*1*9) = 27 = 3^3.

%t Select[Range[20000],GeometricMean[IntegerDigits[#]]==3&] (* _Harvey P. Dale_, Dec 11 2011 *)

%o (Haskell)

%o a061427 n = a061427_list !! (n-1)

%o a061427_list = g [1] where

%o g ds = if product ds == 3 ^ length ds

%o then foldr (\d v -> 10 * v + d) 0 ds : g (s ds) else g (s ds)

%o s [] = [1]; s (9:ds) = 1 : s ds; s (d:ds) = 3*d : ds

%o -- _Reinhard Zumkeller_, Jan 13 2014

%Y Cf. A061426-A061430.

%Y Cf. A174813.

%K nonn,base,easy

%O 1,1

%A _Amarnath Murthy_, May 03 2001

%E More terms from Larry Reeves (larryr(AT)acm.org), May 16 2001