The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061382 Decimal expansion of Pi/e. 14
 1, 1, 5, 5, 7, 2, 7, 3, 4, 9, 7, 9, 0, 9, 2, 1, 7, 1, 7, 9, 1, 0, 0, 9, 3, 1, 8, 3, 3, 1, 2, 6, 9, 6, 2, 9, 9, 1, 2, 0, 8, 5, 1, 0, 2, 3, 1, 6, 4, 4, 1, 5, 8, 2, 0, 4, 9, 9, 7, 0, 6, 5, 3, 5, 3, 2, 7, 2, 8, 8, 6, 3, 1, 8, 4, 0, 9, 1, 6, 9, 3, 9, 4, 4, 0, 1, 8, 8, 4, 3, 4, 2, 3, 5, 6, 7, 3, 5, 5, 8, 8, 0, 4, 4, 8 (list; constant; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 REFERENCES Paul J. Nahin, "An Imaginary Tale, The Story of [Sqrt(-1)]," Princeton University Press, Princeton, NJ 1998, p. 188. LINKS Harry J. Smith, Table of n, a(n) for n = 1..20000 Solution of Problem 11771, The American Mathematical Monthly, 121 (2014). FORMULA Equals A000796 / A001113. Equals Integral_{-inf..inf} cos(x)/(1 + x^2) dx. - Robert G. Wilson v Equals Integral_{-inf..inf} cos(x)/(1 + x^2)^2 dx. - Amiram Eldar, Jul 21 2020 EXAMPLE Pi/e ~= 1.15572734979092171791009318331269629912... MATHEMATICA RealDigits[ Pi/E, 10, 110][[1]] (* Or *) RealDigits[ Integrate[ Cos[x]/(1 + x^2), {x, -Infinity, Infinity}], 10, 111][[1]] (* Robert G. Wilson v Jan 15 2004 *) PROG (PARI) { default(realprecision, 20080); x=Pi/exp(1); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b061382.txt", n, " ", d)) } \\ Harry J. Smith, Jul 22 2009 CROSSREFS Cf. A061666 (continued fraction for Pi/e). Cf. A001113, A000796. Sequence in context: A249649 A226571 A274030 * A113272 A222392 A049471 Adjacent sequences:  A061379 A061380 A061381 * A061383 A061384 A061385 KEYWORD cons,nonn AUTHOR Jason Earls, Jun 08 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 23 13:25 EDT 2021. Contains 343204 sequences. (Running on oeis4.)