login
A061379
Difference between n and its reversal is a perfect cube.
2
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 14, 22, 25, 30, 33, 36, 41, 44, 47, 52, 55, 58, 63, 66, 69, 74, 77, 85, 88, 96, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393
OFFSET
1,2
COMMENTS
14 ~ 41 = 41 - 14 = 27 = 3^3 hence 14 and 41 are in the sequence.
LINKS
FORMULA
a(n) = k if mod ( k ~R(k)) = r^3.where R(k) is the digit reversal of k (A004086).
MATHEMATICA
pcQ[n_]:=Module[{rn=FromDigits[Reverse[IntegerDigits[n]]]}, IntegerQ[ Power[ Abs[n-rn], (3)^-1]]]; Select[Range[400], pcQ] (* Harvey P. Dale, Nov 21 2011 *)
Select[Range[400], IntegerQ[Surd[Abs[#-IntegerReverse[#]], 3]]&] (* The program uses the IntegerReverse function from Mathematica version 10 *) (* Harvey P. Dale, Mar 06 2016 *)
CROSSREFS
Sequence A061923 excludes palindromic n's.
Sequence in context: A322855 A322803 A322800 * A050761 A030721 A190296
KEYWORD
nonn,base,easy
AUTHOR
Amarnath Murthy, May 02 2001
EXTENSIONS
Corrected and extended by Erich Friedman, May 08 2001
STATUS
approved