login
A061367
Composite n such that sigma(n)-phi(n) divides sigma(n)+phi(n).
2
15, 35, 95, 119, 143, 209, 287, 319, 323, 357, 377, 527, 559, 779, 899, 923, 989, 1007, 1045, 1189, 1199, 1343, 1349, 1763, 1919, 2159, 2261, 2507, 2639, 2759, 2911, 3239, 3339, 3553, 3599, 3827, 4031, 4147, 4607, 5049, 5183, 5207, 5249, 5459, 5543, 6439
OFFSET
1,1
COMMENTS
Primes trivially satisfy the defining condition.
LINKS
FORMULA
It seems that a(n) is asymptotic to c*n^2, 2<c<2.5 and that a(n)>2*n^2. - Benoit Cloitre, Sep 17 2002
EXAMPLE
sigma(15)-phi(15) = 24-8 = 16 divides sigma(15)-phi(15)=24+8 = 32, so 15 is a term of the sequence.
MATHEMATICA
f[n_] := Module[{a = DivisorSigma[1, n], b = EulerPhi[n]}, Mod[(a + b), (a - b)] == 0]; Select[Range[2, 10^4], (f[ # ] && ! PrimeQ[ # ]) &]
CROSSREFS
Sequence in context: A109068 A334309 A238232 * A070161 A142591 A321617
KEYWORD
nonn
AUTHOR
Joseph L. Pe, Feb 13 2002
STATUS
approved