login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061214 Product of composite numbers between the n-th and (n+1)st primes. 12
1, 4, 6, 720, 12, 3360, 18, 9240, 11793600, 30, 45239040, 59280, 42, 91080, 311875200, 549853920, 60, 1072431360, 328440, 72, 2533330800, 531360, 4701090240, 60072730099200, 970200, 102, 1157520, 108, 1367520, 1063186156509747740870400000, 2146560, 43191973440 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

A006530(a(n)) = A052248(n) for n > 1. - Reinhard Zumkeller, Jun 22 2011

LINKS

T. D. Noe, Table of n, a(n) for n = 1..2000

EXAMPLE

a(4) = 8 * 9 * 10 = 720. 7 is the fourth prime and 11 is the fifth prime. a(5) = 12 as 11 and 13 both are primes.

MAPLE

A061214 := proc(n)

    local k ;

    product(k, k=ithprime(n)+1..ithprime(n+1)-1) ;

end proc: # R. J. Mathar, Apr 23 2013

MATHEMATICA

Table[Times@@Range[Prime[n]+1, Prime[n+1]-1], {n, 30}] (* Harvey P. Dale, Jun 14 2011 *)

PROG

(PARI) { n=0; q=2; forprime (p=3, prime(2001), a=1; for (i=q + 1, p - 1, a*=i); q=p; write("b061214.txt", n++, " ", a) ) } \\ Harry J. Smith, Jul 19 2009

(PARI) v=primes(100); for(i=1, #v-1, v[i]=prod(j=v[i]+1, v[i+1]-1, j)); vecextract(v, "1..-2") \\ Charles R Greathouse IV, Feb 27 2012

(Haskell)

a061214 n = a061214_list !! (n-1)

a061214_list = f a000040_list where

   f (p:ps'@(p':ps)) = (product [p+1..p'-1]) : f ps'

-- Reinhard Zumkeller, Jun 22 2011

CROSSREFS

Cf. A052297

Sequence in context: A027717 A035481 A323214 * A137024 A054264 A077305

Adjacent sequences:  A061211 A061212 A061213 * A061215 A061216 A061217

KEYWORD

nonn

AUTHOR

Amarnath Murthy, Apr 21 2001

EXTENSIONS

More terms from James A. Sellers, Apr 24 2001

Better definition from T. D. Noe, Jan 21 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 21 13:37 EDT 2019. Contains 327253 sequences. (Running on oeis4.)