This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061189 Triangle of coefficients of polynomials (rising powers) useful for convolutions of A000204(n+1), n >= 0 (Lucas numbers). 2
 1, 2, 0, -10, 15, 25, 30, 475, 450, 125, 6000, 8500, 6250, 5000, 1250, 96000, 146250, 189375, 159375, 65625, 9375, 180000, 5355000, 8881250, 5578125, 2515625, 721875, 78125, 44100000, 254700000, 341775000 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS The row polynomials pL2(n,x) := sum(a(n,m)*x^m,m=0..n) and pL1(n,x) := sum(A061188(n,m)*x^m,m=0..n) appear in the k-fold convolution of the Lucas numbers L(n+1)= A000204(n+1)= A000032(n+1), n >= 0, as follows: L(k; n) := A060922(n+k,k)= (pL1(k,n)*L(n+2)+pL2(k,n)*L(n+1)/(k!*5^k). LINKS EXAMPLE {1}; {2,0}; {-10,15,25}; {30,475,450,125}; ...; pL2(2,n)=5*(-2+3*n+5*n^2)= 5*(1+n)*(-2+5*n). L(2; n) := A060922(n+2,2)= A060929(n) = (1+n)*((4+5*n)*L(n+2)+(-2+5*n)*L(n+1))/(2*5). CROSSREFS A061188(n, m) (companion triangle), A060922(n, m) (Lucas convolution triangle). Sequence in context: A303350 A070681 A228539 * A019220 A019140 A303490 Adjacent sequences:  A061186 A061187 A061188 * A061190 A061191 A061192 KEYWORD sign,tabl AUTHOR Wolfdieter Lang, Apr 20 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 20 07:33 EDT 2019. Contains 328252 sequences. (Running on oeis4.)