login
A061180
Fifth column (m=4) of triangle A060920 (bisection of Fibonacci triangle, even part).
2
1, 20, 190, 1295, 7285, 36122, 163730, 693835, 2790100, 10758050, 40075630, 145052300, 512347975, 1772132390, 6018885570, 20118711993, 66306068715, 215797999830, 694463680160, 2212291834405, 6982976069384
OFFSET
0,2
COMMENTS
Numerator polynomial of g.f. is sum(A061176(5,m)*x^m, m=0..5).
LINKS
Index entries for linear recurrences with constant coefficients, signature (15, -95, 330, -685, 873, -685, 330, -95, 15, -1).
FORMULA
a(n) = A060920(n+4,4).
G.f.: ((1-x^5)+5*(x-x^4)-15*(x^2-x^3))/(1-3*x+x^2)^5.
MATHEMATICA
CoefficientList[Series[((1-x^5)+5(x-x^4)-15(x^2-x^3))/(1-3x+x^2)^5, {x, 0, 40}], x] (* or *) LinearRecurrence[{15, -95, 330, -685, 873, -685, 330, -95, 15, -1}, {1, 20, 190, 1295, 7285, 36122, 163730, 693835, 2790100, 10758050}, 30] (* Harvey P. Dale, Sep 01 2022 *)
CROSSREFS
Cf. A061179.
Sequence in context: A014806 A022615 A171075 * A125383 A126541 A213218
KEYWORD
nonn,easy
AUTHOR
Wolfdieter Lang, Apr 20 2001
STATUS
approved