login
A061163
a(n) = (10n)!*n!/((5n)!*(4n)!*(2n)!).
9
1, 630, 1385670, 3528923580, 9540949030470, 26651569523959380, 75998432812419471900, 219813190240007470094520, 642409325786050322446410310, 1892390644737640220059489996260
OFFSET
0,2
COMMENTS
According to page 781 of the cited reference the generating function F(x) for a(n) is algebraic but not obviously so and the minimal polynomial satisfied by F(x) is quite large.
This sequence is the particular case a = 5, b = 1 of the following result (see Bober, Theorem 1.2): let a, b be nonnegative integers with a > b and GCD(a,b) = 1. Then (2*a*n)!*(b*n)!/((a*n)!*(2*b*n)!*((a-b)*n)!) is an integer for all integer n >= 0. Other cases include A061162 (a = 3, b = 1), A211419 (a = 3, b = 2) and A211420(a = 4, b = 1) and A211421 (a = 4, b = 3). The o.g.f. Sum_{n >= 1} a(n)*z^n is algebraic over the field of rational functions Q(z) (see Rodriguez-Villegas). - Peter Bala, Apr 10 2012
Continuing the comment above: This is case n = 4 of the array of sequences
A(n, k) = 4^(n*k)*(Gamma((n + 1)*k + 1/2)/Gamma(k + 1/2)) / Gamma(n * k + 1). See the cross-references for other cases. - Peter Luschny, Feb 21 2024
REFERENCES
M. Kontsevich and D. Zagier, Periods, in Mathematics Unlimited - 2001 and Beyond, Springer, Berlin, 2001, pp. 771-808.
LINKS
J. W. Bober, Factorial ratios, hypergeometric series, and a family of step functions, 2007, arXiv:0709.1977 [math.NT], 2007; Jour. of the London Math. Soc., Vol. 79, Issue 2, 422-444.
F. Rodriguez-Villegas, Integral ratios of factorials and algebraic hypergeometric functions, arXiv:math/0701362 [math.NT], 2007.
FORMULA
n*(4*n-3)*(2*n-1)*(4*n-1)*a(n) -10*(10*n-9)*(10*n-7)*(10*n-3)*(10*n-1)*a(n-1)=0. - R. J. Mathar, Oct 26 2014
O.g.f. is a generalized hypergeometric function 4F3([1/10, 3/10, 7/10, 9/10], [1/4, 1/2, 3/4], 5^5*z). - Karol A. Penson, Apr 13 2022
From Karol A. Penson, Feb 21 2024: (Start)
(O.g.f.(z))^2 satisfies the algebraic equation of order 15, in which the powers of (O.g.f.(z))^2 are multiplied by polynomials p(n, z) with integer coefficients, in the form: Sum_{n = 0..15} p(n, z)*(O.g.f.(z))^(2*n) = 0.
Here is the list of orders, in the variable z, of all polynomials p(n, z) for n=0..15: 9,9,9,9,9,10,10,10,10,10,10,11,11,11,11,11,12. For example p(15, z) = 2^50*(5^5*z-1)^12. (End)
a(n) ~ 5^(5*n) / (2^(3/2) * sqrt(Pi*n)). - Vaclav Kotesovec, Aug 27 2024
MAPLE
A061163 := n->(10*n)!*n!/((5*n)!*(4*n)!*(2*n)!);
# Alternative:
A := (n, k) -> 4^(n*k)*(GAMMA((n + 1)*k + 1/2)/GAMMA(k + 1/2))/GAMMA(n*k + 1):
seq(A(4, k), k = 0..9); # Peter Luschny, Feb 21 2024
MATHEMATICA
Table[(10n)! n!/((5n)!(4n)!(2n)!), {n, 0, 10}] (* Harvey P. Dale, Oct 24 2022 *)
CROSSREFS
Cf. A000012 (n=0), A001448 (n=1), A061162 (n=2), A211420 (n=3), this sequence (n=4).
Sequence in context: A366489 A225390 A376869 * A045168 A270802 A119504
KEYWORD
easy,nonn
AUTHOR
Richard Stanley, Apr 17 2001
STATUS
approved