

A061112


Minimum number of divisors for any composite between prime(n) and prime(n+1).


2



3, 4, 3, 6, 4, 6, 4, 3, 8, 4, 4, 8, 4, 3, 4, 12, 4, 4, 12, 4, 4, 4, 4, 6, 8, 4, 12, 4, 3, 4, 4, 8, 4, 12, 4, 4, 4, 3, 4, 18, 4, 14, 4, 12, 4, 4, 4, 12, 8, 4, 20, 4, 4, 4, 4, 16, 4, 4, 8, 3, 4, 4, 16, 4, 4, 4, 4, 12, 8, 4, 3, 4, 4, 4, 4, 4, 4, 4, 4, 24, 4, 20, 4, 8, 4, 4, 4, 16, 4, 4, 4, 4, 4, 4, 4, 4
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

2,1


LINKS

Harry J. Smith, Table of n, a(n) for n = 2,...,1000


FORMULA

a(n)=Min{d(c); p(n+1)>c>p(n)}, c is composite, p(n) is the nth prime and d=A000005()


EXAMPLE

p(30)=113 is followed by 13 composites; numbers of divisors are {8, 4, 6, 6, 4, 4, 16, 3, 4, 4, 6, 4, 12}, The smallest is 4=a(30) and the largest is 16.


PROG

(PARI) { n=1; q=3; m=10^6; forprime (p=5, prime(1003), a=m; for (i=q + 1, p  1, a=min(numdiv(i), a)); q=p; write("b061112.txt", n++, " ", a) ) } \\ Harry J. Smith, Jul 19 2009


CROSSREFS

A000005, A061117.
Sequence in context: A327650 A242801 A021295 * A078809 A245218 A097857
Adjacent sequences: A061109 A061110 A061111 * A061113 A061114 A061115


KEYWORD

nonn


AUTHOR

Labos Elemer, May 29 2001


STATUS

approved



