|
|
A061107
|
|
a(0) = 0, a(1) = 1, a(n) is the concatenation of a(n-2) and a(n-1) for n > 1.
|
|
7
|
|
|
|
OFFSET
|
0,3
|
|
COMMENTS
|
Original name was: In the Fibonacci rabbit problem we start with an immature pair 'I' which matures after one season to 'M'. This mature pair after one season stays alive and breeds a new immature pair and we get the following sequence I, MI, MIM, MIMMI, MIMMIMIM, MIMMIMIMMIMMI... if we replace 'I' by a '0' and 'M' by a '1' we get the required binary sequence.
|
|
REFERENCES
|
Amarnath Murthy, Smarandache Reverse auto correlated sequences and some Fibonacci derived sequences, Smarandache Notions Journal Vol. 12, No. 1-2-3, Spring 2001.
Ian Stewart, The Magical Maze.
|
|
LINKS
|
Harry J. Smith, Table of n, a(n) for n = 0..15
|
|
FORMULA
|
a(0) = 0, a(1) =1, a(n) = concatenation of a(n-1) and a(n-2).
a(n) = a(n-1)*2^floor(log_2(a(n-2))+1)+a(n-2), for n>2, a(2)=10 (base 2). - Hieronymus Fischer, Jun 26 2007
a(n) = A036299(n-1), n>0. - R. J. Mathar, Oct 02 2008
a(n) can be transformed by a(n-1) when you change every single "1"(from a(n-1)) into "10" and every single "0"(from a(n-1)) into "1". [YuJiping and Sirius Caffrey, Apr 30 2015]
|
|
EXAMPLE
|
a(0) = 0, a(1) = 1, a(2) = a(1)a(0)= 10, etc.
|
|
MAPLE
|
A[0]:= 0: A[1]:= 1: A[2]:= 10:
for n from 3 to 20 do
A[n]:= 10^(ilog10(A[n-2])+1)*A[n-1]+A[n-2]
od:
seq(A[n], n=0..10); # Robert Israel, Apr 30 2015
|
|
MATHEMATICA
|
nxt[{a_, b_}]:={b, FromDigits[Join[IntegerDigits[b], IntegerDigits[a]]]}; Transpose[NestList[nxt, {0, 1}, 10]][[1]] (* Harvey P. Dale, Jul 05 2015 *)
|
|
PROG
|
(PARI) { default(realprecision, 100); L=log(10); for (n=0, 15, if (n>2, a=a1*10^(log(a2)\L + 1) + a2; a2=a1; a1=a, if (n==0, a=0, if (n==1, a=a2=1, a=a1=10))); write("b061107.txt", n, " ", a) ) } \\ Harry J. Smith, Jul 18 2009
|
|
CROSSREFS
|
Cf. A063896, A131242. See A005203 for the sequence version converted to decimal.
Column k=10 of A144287.
Sequence in context: A162849 A041182 A036299 * A015498 A266283 A309540
Adjacent sequences: A061104 A061105 A061106 * A061108 A061109 A061110
|
|
KEYWORD
|
base,nonn,easy
|
|
AUTHOR
|
Amarnath Murthy, Apr 20 2001
|
|
EXTENSIONS
|
More terms from Hieronymus Fischer, Jun 26 2007
|
|
STATUS
|
approved
|
|
|
|