login
A061090
Squares the sum of the squares of whose digits are squares.
2
1, 4, 9, 100, 400, 676, 841, 900, 1444, 4225, 10000, 24025, 40000, 42025, 42436, 43264, 66049, 67600, 84100, 90000, 109561, 119716, 144400, 155236, 239121, 244036, 248004, 252004, 335241, 355216, 362404, 373321, 422500, 643204, 664225
OFFSET
1,2
COMMENTS
Contains 10^(2k) for all k.
More generally, if k is in this sequence so is 100k. - Charles R Greathouse IV, Sep 20 2012
REFERENCES
A. Murthy, Smarandache Pythagoras additive square sequence (to be published in Smarandache Notions Journal).
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 1..10000
EXAMPLE
676 = 26^2, 6^2 + 7^2 + 6^2 = 121 = 11^2;
1444 = 38^2, 1^2 + 4^2 + 4^2 + 4^2 = 49 = 7^2.
MAPLE
readlib(issqr): for n from 1 to 2000 do L1 := convert(n^2, base, 10): if issqr(sum(L1[i]^2, i=1..nops(L1))) then printf(`%d, `, n^2) fi: od:
PROG
(PARI) ssd(n)=n=digits(n); sum(i=1, #n, n[i]^2)
v=List(); for(n=1, 1e4, if(issquare(ssd(n^2)), listput(v, n^2))); Vec(v) \\ Charles R Greathouse IV, Sep 20 2012
CROSSREFS
Cf. A053057.
Sequence in context: A061869 A061270 A070254 * A061272 A117680 A042649
KEYWORD
nonn,base
AUTHOR
Amarnath Murthy, Apr 19 2001
EXTENSIONS
Corrected and extended by James A. Sellers, Apr 20 2001
STATUS
approved