login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061037 Numerator of 1/4 - 1/n^2. 72
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

a(n)= mix (A142705=A026741(n)*A026741(n+2)) , (A078371=A005408(n)*A005408(n+2)). Note A026741=mix A001477 , A005408. a(4n)=A001477(n)*A001477(n+1). - Paul Curtz, Aug 27 2009

a(-2)=0, a(-1)=a(1)=-3.

a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - R. J. Mathar

This recurrence is also valuable for a(n) differences and A061038(n+2) and its differences.

Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). - Charles R Greathouse IV, May 27 2011

REFERENCES

J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

LINKS

Harry J. Smith, Table of n, a(n) for n=2..1000

J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg

Wikipedia, Balmer series

Index to sequences with linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).

FORMULA

G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3.

a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005

a(n+2) = A060819(n)*A060819(n+4).

a(n) = (n^2-4)*(3*I^n+3*(-I)^n-27*(-1)^n+37)/64, where I is the imaginary unit. - Bruno Berselli, Feb 10 2011

a(n+2)=n*(n+4)/(period 4: 16, 1, 4, 1 =A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011 [edited by Franklin T. Adams-Watters, Mar 25 2011]

a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014

MATHEMATICA

f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0]

f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *)

a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *)

Numerator[1/4-1/Range[2, 60]^2] (* Harvey P. Dale, Aug 18 2011 *)

PROG

(PARI) { for (n=2, 1000, write("b061037.txt", n, " ", numerator(1/4 - 1/n^2)) ) } \\ Harry J. Smith, Jul 17 2009

(MAGMA) [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011

(Haskell)

import Data.Ratio ((%), numerator)

a061037 n = numerator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Dec 17 2011

CROSSREFS

Cf. A061035-A061050, A126252, A028347.

Sequence in context: A101367 A248256 A049457 * A070262 A171621 A084183

Adjacent sequences:  A061034 A061035 A061036 * A061038 A061039 A061040

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane, May 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified December 19 20:36 EST 2014. Contains 252239 sequences.