The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061037 Numerator of 1/4 - 1/n^2. 73
 0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675 (list; graph; refs; listen; history; text; internal format)
 OFFSET 2,2 COMMENTS From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2). a(-2) = 0, a(-1) = a(1) = -3. - Paul Curtz, Feb 19 2011 Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). - Charles R Greathouse IV, May 27 2011 REFERENCES J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78. LINKS Harry J. Smith, Table of n, a(n) for n=2..1000 J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg. Wikipedia, Balmer series. Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1). FORMULA G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3. a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005 a(n+2) = A060819(n) * A060819(n+4). a(n) = (n^2-4)*(3*i^n+3*(-i)^n-27*(-1)^n+37)/64, where i is the imaginary unit. - Bruno Berselli, Feb 10 2011 a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 28 2011 a(n+2) = n*(n+4)/(period 4: 16, 1, 4, 1 = A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011 [edited by Franklin T. Adams-Watters, Mar 25 2011] a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014 Sum_{n>=3} 1/a(n) = 11/6. - Amiram Eldar, Aug 12 2022 MATHEMATICA f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0] f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *) a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *) Numerator[1/4-1/Range[2, 60]^2] (* Harvey P. Dale, Aug 18 2011 *) PROG (PARI) { for (n=2, 1000, write("b061037.txt", n, " ", numerator(1/4 - 1/n^2)) ) } \\ Harry J. Smith, Jul 17 2009 (Magma) [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011 (Haskell) import Data.Ratio ((%), numerator) a061037 n = numerator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Dec 17 2011 CROSSREFS Cf. A061035-A061050, A126252, A028347. Sequence in context: A298098 A248256 A049457 * A070262 A171621 A084183 Adjacent sequences:  A061034 A061035 A061036 * A061038 A061039 A061040 KEYWORD nonn,frac,nice,easy AUTHOR N. J. A. Sloane, May 26 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 05:48 EST 2022. Contains 358353 sequences. (Running on oeis4.)