login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061037 Numerator of 1/4 - 1/n^2. 74
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

a(-2) = 0, a(-1) = a(1) = -3. - Paul Curtz, Feb 19 2011

Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). - Charles R Greathouse IV, May 27 2011

REFERENCES

J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

LINKS

Harry J. Smith, Table of n, a(n) for n=2..1000

J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg

Wikipedia, Balmer series

Index entries for linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).

FORMULA

G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3.

a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005

a(n+2) = A060819(n) * A060819(n+4).

a(n) = (n^2-4)*(3*i^n+3*(-i)^n-27*(-1)^n+37)/64, where i is the imaginary unit. - Bruno Berselli, Feb 10 2011

a(n) = 3*a(n-4) - 3*a(n-8) + a(n-12). - Paul Curtz, Feb 28 2011

a(n+2) = n*(n+4)/(period 4: 16, 1, 4, 1 = A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011 [edited by Franklin T. Adams-Watters, Mar 25 2011]

a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014

MATHEMATICA

f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0]

f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *)

a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *)

Numerator[1/4-1/Range[2, 60]^2] (* Harvey P. Dale, Aug 18 2011 *)

PROG

(PARI) { for (n=2, 1000, write("b061037.txt", n, " ", numerator(1/4 - 1/n^2)) ) } \\ Harry J. Smith, Jul 17 2009

(MAGMA) [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011

(Haskell)

import Data.Ratio ((%), numerator)

a061037 n = numerator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Dec 17 2011

CROSSREFS

Cf. A061035-A061050, A126252, A028347.

Sequence in context: A256565 A248256 A049457 * A070262 A171621 A084183

Adjacent sequences:  A061034 A061035 A061036 * A061038 A061039 A061040

KEYWORD

nonn,frac,nice,easy,changed

AUTHOR

N. J. A. Sloane, May 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 08:48 EST 2016. Contains 278698 sequences.