login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A061037 Numerator of 1/4 - 1/n^2. 72
0, 5, 3, 21, 2, 45, 15, 77, 6, 117, 35, 165, 12, 221, 63, 285, 20, 357, 99, 437, 30, 525, 143, 621, 42, 725, 195, 837, 56, 957, 255, 1085, 72, 1221, 323, 1365, 90, 1517, 399, 1677, 110, 1845, 483, 2021, 132, 2205, 575, 2397, 156, 2597, 675 (list; graph; refs; listen; history; text; internal format)
OFFSET

2,2

COMMENTS

From Balmer spectrum of hydrogen. Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2).

a(n)= mix (A142705=A026741(n)*A026741(n+2)) , (A078371=A005408(n)*A005408(n+2)). Note A026741=mix A001477 , A005408. a(4n)=A001477(n)*A001477(n+1). [From Paul Curtz, Aug 27 2009]

a(-2)=0, a(-1)=a(1)=-3.

a(n)=3*a(n-4) -3*a(n-8) +a(n-12) (R. J. Mathar).

This recurrence is also valuable for a(n) differences and A061038(n+2) and its differences.

Can be thought of as 4 interlocking sequences, each of the form a(n) = 3a(n - 1) - 3a(n - 2) + a(n - 3). -Charles R Greathouse IV, May 27 2011

REFERENCES

J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 78.

LINKS

Harry J. Smith, Table of n, a(n) for n=2..1000

J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg

Wikipedia, Balmer series

Index to sequences with linear recurrences with constant coefficients, signature (0,0,0,3,0,0,0,-3,0,0,0,1).

FORMULA

G.f.: x^2(-3x^11-x^10-3x^9+14x^7+6x^6+30x^5+2x^4+21x^3+3x^2+5x)/(1-x^4)^3.

a(4n+2) = n(n+1), a(2n+3) = (2n+1)(2n+5), a(4n+4) = (2n+1)(2n+3). - Ralf Stephan, Jun 10 2005

a(n+2) = A060819(n)*A060819(n+4).

a(n) = (n^2-4)*(3*I^n+3*(-I)^n-27*(-1)^n+37)/64, where I is the imaginary unit.  - Bruno Berselli, Feb 10 2011

a(n+2)=n*(n+4)/(period 4: 16, 1, 4, 1 =A146160(n)) = A028347(n+2) / A146160(n). - Paul Curtz, Mar 24 2011, edited by Franklin T. Adams-Watters, Mar 25 2011.

a(n) = (n^2-4) / gcd(4*n^2, (n^2-4)). - Colin Barker, Jan 13 2014

MATHEMATICA

f[n_] := n/GCD[n, 4]; Array[f[#] f[# + 4] &, 51, 0]

f[n_] := Numerator[(n - 2) (n + 2)/(4 n^2)]; Array[f, 51, 2] (* Or *)

a[n_] := 3 a[n - 4] - 3 a[n - 8] + a[n - 12]; a[1] = -3; a[2] = 0; a[3] = 5; a[4] = 3; a[5] = 21; a[6] = 2; a[7] = 45; a[8] = 15; a[9] = 77; a[10] = 6; a[11] = 117; a[12] = 35; Array[a, 51, 2] (* Robert G. Wilson v *)

Numerator[1/4-1/Range[2, 60]^2] (* From Harvey P. Dale, Aug 18 2011 *)

PROG

(PARI) { for (n=2, 1000, write("b061037.txt", n, " ", numerator(1/4 - 1/n^2)) ) } [From Harry J. Smith, Jul 17 2009]

(MAGMA) [ Numerator(1/4-1/n^2): n in [2..52] ]; // Bruno Berselli, Feb 10 2011

(Haskell)

import Data.Ratio ((%), numerator)

a061037 n = numerator (1%4 - 1%n^2)  -- Reinhard Zumkeller, Dec 17 2011

CROSSREFS

Cf. A061035-A061050, A126252, A028347.

Sequence in context: A101367 A248256 A049457 * A070262 A171621 A084183

Adjacent sequences:  A061034 A061035 A061036 * A061038 A061039 A061040

KEYWORD

nonn,frac,nice,easy

AUTHOR

N. J. A. Sloane, May 26 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified October 25 02:02 EDT 2014. Contains 248517 sequences.