This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A061035 Triangle T(m,n) = numerator of 1/m^2 - 1/n^2, n >= 1, m=n,n-1,n-2,...,1. 17
 0, 0, 3, 0, 5, 8, 0, 7, 3, 15, 0, 9, 16, 21, 24, 0, 11, 5, 1, 2, 35, 0, 13, 24, 33, 40, 45, 48, 0, 15, 7, 39, 3, 55, 15, 63, 0, 17, 32, 5, 56, 65, 8, 77, 80, 0, 19, 9, 51, 4, 3, 21, 91, 6, 99, 0, 21, 40, 57, 72, 85, 96, 105, 112, 117, 120, 0, 23, 11, 7, 5, 95, 1, 119, 1, 5, 35, 143, 0 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 1,3 COMMENTS Wavelengths in hydrogen spectrum are given by Rydberg's formula 1/wavelength = constant*(1/m^2 - 1/n^2). REFERENCES J. E. Brady and G. E. Humiston, General Chemistry, 3rd. ed., Wiley; p. 77. LINKS Reinhard Zumkeller, Rows n=1..100 of triangle, flattened J. J. O'Connor and E. F. Robertson, Johannes Robert Rydberg Eric Weisstein's World of Physics, Balmer Formula EXAMPLE Triangle 1/m^2-1/n^2, m >= 1, 1<=n<=m, (i.e. with rows reversed) begins 0 3/4, 0 8/9, 5/36, 0 15/16, 3/16, 7/144, 0 24/25, 21/100, 16/225, 9/400, 0 35/36, 2/9, 1/12, 5/144, 11/900, 0 MATHEMATICA t[m_, n_] := Numerator[1/m^2 - 1/n^2]; Table[t[m, n], {n, 1, 12}, {m, n, 1, -1}] // Flatten(* Jean-François Alcover, Oct 17 2012 *) PROG (Haskell) import Data.Ratio ((%), numerator) a061035 n k = a061035_tabl !! (n-1) !! (k-1) a061035_row = map numerator . balmer where    balmer n = map (subtract (1 % n ^ 2) . (1 %) . (^ 2)) [n, n-1 .. 1] a061035_tabl = map a061035_row [1..] -- Reinhard Zumkeller, Apr 12 2012 CROSSREFS Cf. A061036. Rows give A061037-A061050. Cf. A126252. Sequence in context: A285471 A258113 A174190 * A225233 A021331 A013673 Adjacent sequences:  A061032 A061033 A061034 * A061036 A061037 A061038 KEYWORD nonn,tabl,easy,nice,frac AUTHOR N. J. A. Sloane, May 26 2001 EXTENSIONS More terms from Naohiro Nomoto, Jul 15 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 18 07:42 EDT 2019. Contains 328146 sequences. (Running on oeis4.)