OFFSET
0,1
COMMENTS
Any three consecutive terms are a solution to the Diophantine equation x^2 + y^2 + z^2 = xyz.
LINKS
Harry J. Smith, Table of n, a(n) for n = 0..17
Loren C. Larson, Solution to Problem Proposal 701, College Mathematics Journal 33 (2002), pp. 241-242.
Edward T. H. Wang, Problem Proposal 701, College Mathematics Journal 32 (2001), p. 211.
FORMULA
From Jon E. Schoenfield, May 12 2019: (Start)
It appears that, for n >= 1,
a(n) = ceiling(e^(c0*phi^n - c1/(-phi)^n))
where
phi = (1 + sqrt(5))/2,
c0 = 0.4004033011137849744572073756789830081726425559860...
c1 = 0.2798639753144007577581523025628820390768226527315...
(End)
MATHEMATICA
RecurrenceTable[{a[n] == a[n - 1] a[n - 2] - a[n - 3], a[0] == a[1] == a[2] == 3}, a, {n, 0, 12}] (* Michael De Vlieger, Aug 21 2016 *)
PROG
(PARI) for (n=0, 17, if (n>2, a=a1*a2 - a3; a3=a2; a2=a1; a1=a, if (n==0, a=a3=3, if (n==1, a=a2=3, a=a1=3))); write("b061021.txt", n, " ", a)) \\ Harry J. Smith, Jul 16 2009
(Haskell)
a061021 n = a061021_list !! n
a061021_list = 3 : 3 : 3 : zipWith (-)
(tail $ zipWith (*) (tail a061021_list) a061021_list) a061021_list
-- Reinhard Zumkeller, Mar 25 2015
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Stephen G Penrice, May 23 2001
EXTENSIONS
More terms from Erich Friedman, Jun 03 2001
Name clarified by Petros Hadjicostas, May 11 2019
STATUS
approved