login
This site is supported by donations to The OEIS Foundation.

 

Logo

Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing.
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060925 a(n) = 2a(n-1) + 3a(n-2), a(0) = 1, a(1) = 4. 12
1, 4, 11, 34, 101, 304, 911, 2734, 8201, 24604, 73811, 221434, 664301, 1992904, 5978711, 17936134, 53808401, 161425204, 484275611, 1452826834, 4358480501, 13075441504, 39226324511, 117678973534, 353036920601 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)=charpoly(A,2). - Milan Janjic, Jan 26 2010

LINKS

Harry J. Smith, Table of n, a(n) for n=0,...,200

Index entries for linear recurrences with constant coefficients, signature (2, 3).

FORMULA

Row sums of Lucas convolution triangle A060922.

Inverse binomial transform of A003947. - Philippe Deléham, Jul 23 2005

a(n) = sum_{m=0..n} A060922(n, m) = sum_{j=1..n} (a(j-1)*A000204(n-j+1)) + A000204(n+1).

a(n) = (5*3^n - (-1)^n)/4.

G.f.: (1+2*x)/(1 - 2*x - 3*x^2).

a(2n) = 3a(2n-1) - 1; a(2n+1) = 3a(2n) + 1. - Philippe Deléham, Jul 23 2005

Binomial transform is A003947. - Paul Barry, May 19 2003

MATHEMATICA

f[n_]:=3/(n+2); x=2; Table[x=f[x]; Denominator[x], {n, 0, 5!}] (* Vladimir Joseph Stephan Orlovsky, Mar 11 2010 *)

LinearRecurrence[{2, 3}, {1, 4}, 30] (* Harvey P. Dale, Mar 07 2014 *)

PROG

(PARI) { for (n=0, 200, write("b060925.txt", n, " ", (5*3^n - (-1)^n)/4); ) } \\ Harry J. Smith, Jul 19 2009

CROSSREFS

Sequence in context: A327548 A144791 A180305 * A027045 A243781 A227329

Adjacent sequences:  A060922 A060923 A060924 * A060926 A060927 A060928

KEYWORD

nonn,easy

AUTHOR

Wolfdieter Lang, Apr 20 2001

EXTENSIONS

Recurrence, now used as definition, from Philippe Deléham, Jul 23 2005

Entry revised by N. J. A. Sloane, Sep 10 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 00:30 EST 2019. Contains 329988 sequences. (Running on oeis4.)