login
A060907
E.g.f.: exp(x*exp(x) + 1/2*x^2*exp(x)^2 + 1/4*x^4*exp(x)^4).
2
1, 1, 4, 19, 116, 901, 8422, 89755, 1061048, 13746169, 193901066, 2965146559, 48946004956, 867463969789, 16405240966766, 329147315037811, 6973157545554128, 155446026607476145, 3636697161715448914, 89099916704329731895, 2281451214192505136516
OFFSET
0,3
COMMENTS
The number of functions from {1,2,...,n} into itself such that f(x) = f^5(x). - Geoffrey Critzer, Sep 18 2012
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
LINKS
FORMULA
E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 1, m = 4.
MAPLE
egf:= exp(x*exp(x)+x^2*exp(x)^2/2+x^4*exp(x)^4/4):
a:= n-> n!*coeff(series(egf, x, n+11), x, n):
seq(a(n), n=0..25); # Alois P. Heinz, Jul 25 2014
MATHEMATICA
nn=20; a=x Exp[x]; Range[0, nn]!CoefficientList[Series[Exp[a+a^2/2+a^4/4], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 18 2012 *)
CROSSREFS
Column k=5 of A245501.
Sequence in context: A261497 A217989 A281817 * A245505 A247056 A163859
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 07 2001
STATUS
approved