login
A060906
E.g.f.: exp(x*exp(x) + 1/3*x^3*exp(x)^3).
2
1, 1, 3, 12, 73, 556, 4737, 44122, 453441, 5186664, 65671201, 906052654, 13418086497, 211472682604, 3535616946513, 62621439810066, 1172370604136833, 23118679430573008, 478329265510033473, 10349724555927678934, 233633352312272612001, 5492655756487132979796
OFFSET
0,3
COMMENTS
The number of functions from {1,2,...,n} to itself such that f(x)=f^4(x). - Geoffrey Critzer, Sep 18 2012
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983.
LINKS
FORMULA
E.g.f.: exp(Sum_{d|m} T_k^d/d), where T_k = x*exp(T_(k - 1)), k >= 1, T_0 = x; k = 1, m = 3.
MATHEMATICA
nn=20; a=x Exp[x]; Range[0, nn]!CoefficientList[Series[Exp[a+a^3/3], {x, 0, nn}], x] (* Geoffrey Critzer, Sep 18 2012 *)
CROSSREFS
Column k=4 of A245501.
Sequence in context: A260622 A348222 A346664 * A245506 A275385 A247055
KEYWORD
nonn
AUTHOR
Vladeta Jovovic, Apr 07 2001
STATUS
approved