%I
%S 2,3,6,15,55,182,715,3135,15015,81345,448630,2733549,17490603,
%T 114388729,785147363,5708795638,43850489690,342503171205,
%U 2803419704514,23622001517543,201817933409378,1793779635410490,16342166369958702,154171363634898185,1518410187442699518,15259831781575946565
%N Upper central divisor of nth primorial.
%C Also: Write product of first n primes as x*y with x < y and x maximal; sequence gives value of y. This was originally a separate sequence, A061059. Indeed, p(n)# = primorial(n) = A002110(n) is never a square for n >= 1; all exponents in the prime factorization are 1. The latter gives primorial(n) has N=2^n distinct divisors. Since this is an even number, the N divisors can be grouped in N/2 pairs {d(k), d(N+1k)} with product equal to p(n)#. One of the two is always smaller and one is larger than sqrt(p(n)#). This sequence gives the (2^(n1)+1)th divisor, which is the smallest one larger than sqrt(p(n)#).  _M. F. Hasler_, Sep 20 2011
%H David A. Corneth, <a href="/A060796/b060796.txt">Table of n, a(n) for n = 1..38</a> (first 37 terms from M. F. Hasler)
%F a(n) = A033677(A002110(n)).
%e n = 8, q(8) = 2*3*5*7*11*13*17*19 = 9699690. Its 128th and 129th divisors are {3094, 3135}: a(8) = 3135, and 3094 < A000196(9699690) = 3114 < 3135. [Corrected by _M. F. Hasler_, Sep 20 2011]
%t k = 1; Do[k *= Prime[n]; l = Divisors[k]; x = Length[l]; Print[l[[x/2 + 1]]], {n, 1, 24}] (* _Ryan Propper_, Jul 25 2005 *)
%o (PARI) A060796(n) = divisors(prod(k=1,n,prime(k)))[2^(n1)+1] \\ _M. F. Hasler_, Sep 20 2011
%Y Cf. A060755, A000196, A033677.
%Y Cf. A061055, A061056, A061057, A061058, A060796, A061060, A061030, A061031, A061032, A061033.
%K nonn
%O 1,1
%A _Labos Elemer_, Apr 27 2001
%E More terms from _Ryan Propper_, Jul 25 2005
%E Further terms a(24) .. a(37) calculated from A182987: cf. bfile.  _M. F. Hasler_, Sep 20 2011
