login
A060768
Pseudo-Kaprekar triples: q such that if q=x+y+z, then q^3=x*10^i + y*10^j + z, where (y*10^j+z < 10^i) and z < 10^j.
4
1, 8, 10, 45, 100, 134, 297, 783, 972, 1000, 1368, 1611, 2322, 2710, 2728, 3086, 4445, 4544, 4949, 5049, 5455, 5554, 7172, 10000, 19908, 21268, 27100, 44443, 55556, 60434, 76581, 77778, 100000, 103239, 133334, 143857, 199728, 208494, 226071
OFFSET
1,2
COMMENTS
True Kaprekar triples (A006887) must have j=n and i=2n, where n is the number of digits in q.
LINKS
EXAMPLE
134^3=2406104 and 134=24+06+104. 134 is not a Kaprekar triple since the three terms of the sum would need to be 2, 406 and 104. 134 is not a term of A328198 because one addend (06) begins with '0'.
CROSSREFS
Sequence in context: A325999 A240036 A091632 * A218464 A060809 A112547
KEYWORD
nonn,base
AUTHOR
Larry Reeves (larryr(AT)acm.org), Apr 24 2001
EXTENSIONS
Offset changed to 1 by Giovanni Resta, Oct 09 2019
STATUS
approved