This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060746 Absolute value of numerator of non-Euler-constant term of Laurent expansion of Gamma function at s=-n. 1
 0, 1, 3, 11, 25, 137, 49, 121, 761, 7129, 7381, 83711, 86021, 1145993, 1171733, 1195757, 2436559, 42142223, 14274301, 275295799, 11167027, 18858053, 6364399, 444316699, 269564591, 34052522467, 34395742267, 312536252003 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS If you start with log(z) and integrate it n times in succession, then you get z^n*log(z)/n! - K(n)*z^n where K(1)=1, K(2)=3/4, K(3)=11/36, K(4)=25/288, K(5)=137/7200, K(6)=49/14400, etc. - Warren D. Smith, Jan 01 2006 It appears that, if we discard the first term and set a(0)=1, then a(n) = denominator of n!(h(n)/h(n+1)) where h(n) is the n-th harmonic number = Sum_{k=1..n} 1/k. - Gary Detlefs, Sep 09 2010 LINKS FORMULA Conjecture: a(n) = lcm(Wolstenholme(n), n!)/n!, cf. A001008. - Vladeta Jovovic, May 20 2004 EXAMPLE series(GAMMA(s), s=-4,1 ) = series(1/24*(s+4)^(-1)+(25/288-1/24*gamma)+O((s+4)),s=-4,1). Hence a(4)=25 series(GAMMA(s), s=-5,1 ) = series(-1/120*(s+5)^(-1)+(-137/7200+1/120*gamma)+O((s+5)),s=-5,1). Hence a(5)=137. MATHEMATICA a[0] = 0; a[n_] := (n-1)!*HarmonicNumber[n-1] / HarmonicNumber[n] // Denominator; Table[a[n], {n, 0, 27}]  (* Jean-François Alcover, Feb 04 2013, after Gary Detlefs *) CROSSREFS Sequence in context: A164303 A129082 A190476 * A111935 A175441 A001008 Adjacent sequences:  A060743 A060744 A060745 * A060747 A060748 A060749 KEYWORD nonn AUTHOR Sen-Peng Eu, Apr 23 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 16 16:40 EDT 2018. Contains 313809 sequences. (Running on oeis4.)