

A060728


Numbers n such that Ramanujan's equation x^2 + 7 = 2^n has an integer solution.


13




OFFSET

1,1


COMMENTS

See A038198 for corresponding x.  Lekraj Beedassy, Sep 07 2004
Also numbers such that 2^(n3)1 is in A000217, i.e., a triangular number.  M. F. Hasler, Feb 23 2009
With respect to M. F. Hasler's comment above, all terms 2^(n3)  1 are known as the RamanujanNagell triangular numbers (A076046).  Raphie Frank, Mar 31 2013
Consider the form z = (x^2  y^2) for x = (a^k + b^k) and y = (a^k  b^k). Now set a and b as the two complex solutions to the quadratic equation d^2  d + 2 = 0. Then a = ((1i*sqrt(7))/2), b = ((1+i*sqrt(7))/2), and z = (a^k + b^k)^2  (a^k  b^k)^2 = ((((1i*sqrt(7))/2)^(k) + ((1+i*sqrt(7))/2)^(k))^2  (((1i*sqrt(7))/2)^(k)  ((1+i*sqrt(7))/2)^(k))^2) = 4*a^k*b^k = 4*2^k = 2^(k + 2) for all k in N. If and only if k is in {1, 2, 3, 5, 13} = a(n)  2, then y^2 = (a^k  b^k)^2 = 7, and z is therefore a power of two following form x^2  (7) = x^2 + 7. x^2 = (A002249(a(n)  2))^2 = A227078(n). 7 = (sqrt(7)*A107920(a(n)  2))^2.  Raphie Frank, Jan 06 2014


REFERENCES

J.M. De Koninck, Ces nombres qui nous fascinent, Entry 181, p. 56, Ellipses, Paris 2008.
J. Roberts, Lure of the Integers. pp. 9091, MAA 1992.
Ian Stewart & David Tall, Algebraic Number Theory and Fermat's Last Theorem, 3rd Ed. Natick, Massachusetts (2002): 9698.


LINKS

Table of n, a(n) for n=1..5.
T. Skolem, S. Chowla and D. J. Lewis, The Diophantine Equation 2^(n+2)7=x^2 and Related Problems. Proc. Amer. Math. Soc. 10 (1959) 663669. [M. F. Hasler, Feb 23 2009]
Anonymous, Developing a general 2nd degree Diophantine Equation x^2 + p = 2^n
M. Beeler, R. W. Gosper and R. Schroeppel, HAKMEM: item 31: A Ramanujan Problem (R. Schroeppel)
T. Do, Developing A General 2nd Degree Diophantine Equation x^2 + p = 2^n
Gerry Myerson, Bibliography
S. Ramanujan, Journal of the Indian Mathematical Society, Question 464(v,120)
Eric Weisstein's World of Mathematics, Ramanujan's Square Equation
Eric Weisstein's World of Mathematics, Diophantine Equation 2nd Powers
Wikipedia, Diophantine equation


EXAMPLE

The fifth and ultimate solution to Ramanujan's equation is obtained for the 15th power of 2, so that we have x^2 + 7 = 2^15 yielding x = 181.


MATHEMATICA

ramaNagell[n_] := Reduce[x^2 + 7 == 2^n, x, Integers] =!= False; Select[ Range[100], ramaNagell] (* JeanFrançois Alcover, Sep 21 2011 *)


PROG

(MAGMA) [n: n in [0..100]  IsSquare(2^n7)]; // Vincenzo Librandi, Jan 07 2014


CROSSREFS

Cf. A038198.
Sequence in context: A089560 A248077 A239547 * A216433 A101761 A035359
Adjacent sequences: A060725 A060726 A060727 * A060729 A060730 A060731


KEYWORD

fini,full,nonn


AUTHOR

Lekraj Beedassy, Apr 25 2001


EXTENSIONS

Added keyword "full", M. F. Hasler, Feb 23 2009


STATUS

approved



