This site is supported by donations to The OEIS Foundation.



Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060715 Number of primes between n and 2n exclusive. 40


%S 0,1,1,2,1,2,2,2,3,4,3,4,3,3,4,5,4,4,4,4,5,6,5,6,6,6,7,7,6,7,7,7,7,8,

%T 8,9,9,9,9,10,9,10,9,9,10,10,9,9,10,10,11,12,11,12,13,13,14,14,13,13,

%U 12,12,12,13,13,14,13,13,14,15,14,14,13,13,14,15,15

%N Number of primes between n and 2n exclusive.

%C See the additional references and links mentioned in A143227. [_Jonathan Sondow_, Aug 03 2008]

%C a(A060756(n)) = n and a(m) <> n for m < A060756(n). [_Reinhard Zumkeller_, Jan 08 2012]

%C For prime n conjecturally a(n) = A226859(n). [_Vladimir Shevelev_, Jun 27 2013]

%C The number of partitions of 2n+2 into exactly two parts where the first part is a prime strictly less than 2n+1. [_Wesley Ivan Hurt_, Aug 21 2013]

%D M. Aigner and C. M. Ziegler, Proofs from The Book, Chapter 2, Springer NY 2001.

%H T. D. Noe, <a href="/A060715/b060715.txt">Table of n, a(n) for n = 1..1000</a>

%H C. K. Caldwell, The Prime Glossary, <a href="http://primes.utm.edu/glossary/page.php/Bertrandspostulate.html">Bertrand's postulate</a>

%H R. Chapman, <a href="http://www.maths.ex.ac.uk/~rjc/etc/bertrand.pdf">Bertrand postulate</a> [Broken link]

%H Math Olympiads, <a href="http://matholymp.com/TUTORIALS/Bertrand.pdf">Bertrand's Postulate</a> [Broken link]

%H S. Ramanujan, <a href="http://ramanujan.sirinudi.org/Volumes/published/ram24.html">A proof of Bertrand's postulate</a>, J. Indian Math. Soc., 11 (1919), 181-182.

%H V. Shevelev, <a href="http://arxiv.org/abs/0909.0715">Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes</a>, arXiv:0909.0715v13 [math.NT]

%H V. Shevelev, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL15/Shevelev/shevelev19.html">Ramanujan and Labos Primes, Their Generalizations, and Classifications of Primes</a>, Journal of Integer Sequences, Vol. 15 (2012), Article 12.5.4

%H M. Slone, PlanetMath.org, <a href="http://planetmath.org/encyclopedia/ProofOfBertrandsConjecture.html">Proof of Bertrand's conjecture</a>

%H J. Sondow and Eric Weisstein, <a href="http://mathworld.wolfram.com/BertrandsPostulate.html">Bertrand's Postulate</a>, World of Mathematics

%H Wikipedia, <a href="http://en.wikipedia.org/wiki/Proof_of_Bertrand%27s_postulate">Proof of Bertrand's postulate</a>

%H Dr. Wilkinson, The Math Forum, <a href="http://mathforum.org/library/drmath/view/51527.html">Erdos' Proof</a>

%H Wolfram Research, <a href="http://functions.wolfram.com/NumberTheoryFunctions/Prime/31/03/ShowAll.html">Bertrand hypothesis</a>

%F a(n) = sum(A010051(n+k): 1<=k<n). [_Reinhard Zumkeller_, Dec 03 2009]

%F a(n) = A000720(2n-1) - A000720(n). [_Wesley Ivan Hurt_, Aug 21 2013]

%e a(35)=8 since eight consecutive primes (37,41,43,47,53,59,61,67) are located between 35 and 70.

%p a := proc(n) local counter, i; counter := 0; from i from n+1 to 2*n-1 do if isprime(i) then counter := counter +1; fi; od; return counter; end:

%p with(numtheory); seq(pi(2*k-1)-pi(k),k=1..100); #[_Wesley Ivan Hurt_, Aug 21 2013]

%t a[n_]:=PrimePi[2n-1]-PrimePi[n]; Table[a[n],{n,1,84}] (* _Jean-Fran├žois Alcover_, Mar 20 2011 *)

%o (PARI) { for (n=1, 1000, write("b060715.txt", n, " ", primepi(2*n - 1) - primepi(n)); ) } [From _Harry J. Smith_, Jul 10 2009]

%o (Haskell)

%o a060715 n = sum $ map a010051 [n+1..2*n-1] -- _Reinhard Zumkeller_, Jan 08 2012

%o (MAGMA) [0] cat [#PrimesInInterval(n+1, 2*n-1): n in [2..80]]; // _Bruno Berselli_, Sep 05 2012

%Y Cf. A060756, A070046, A006992, A051501, A035250, A101909.

%Y Cf. A000720, A014085, A104272, A143223-A143227.

%K nonn,easy

%O 1,4

%A _Lekraj Beedassy_, Apr 25 2001

%E Corrected by Dug Eichelberger (dug(AT)mit.edu), Jun 04 2001.

%E More terms from Larry Reeves (larryr(AT)acm.org), Jun 05 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 5 11:36 EST 2016. Contains 278764 sequences.