login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060690 a(n) = C(2^n + n - 1, n). 20
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e. the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416.

Row sums of A220886. - Geoffrey Critzer, Nov 20 2014

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..59

FORMULA

a(n) = [x^n] 1/(1-x)^(2^n).

a(n) = (1/n!)*Sum((-1)^(n-k)*Stirling1(n, k)*2^(k*n), k=0..n). - Vladeta Jovovic, May 28 2004

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008

a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008

G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007

a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016

MAPLE

with(combinat): for n from 1 to 20 do printf(`%d, `, binomial(2^n+n-1, n)) od:

MATHEMATICA

Table[Binomial[2^n+n-1, n], {n, 0, 20}] (* Harvey P. Dale, Apr 19 2012 *)

PROG

(PARI) a(n)=binomial(2^n+n-1, n)

(PARI) {a(n)=polcoeff(sum(k=0, n, (-log(1-2^k*x +x*O(x^n)))^k/k!), n)} - Paul D. Hanna, Dec 29 2007

(PARI) { for (n=0, 59, write("b060690.txt", n, " ", binomial(2^n + n - 1, n)); ) } [From Harry J. Smith, Jul 09 2009]

(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}

{a(n) = sum(k=0, n, Stirling1(n, k)*(2^n+n-1)^k/n! )}

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 20 2014

CROSSREFS

Cf. A002416, A060336, A088309, A132683, A132684.

Sequence in context: A265942 A120597 A256832 * A013038 A005321 A092645

Adjacent sequences:  A060687 A060688 A060689 * A060691 A060692 A060693

KEYWORD

nonn

AUTHOR

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

EXTENSIONS

More terms from James A. Sellers, Apr 20 2001

Edited by N. J. A. Sloane, Mar 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 3 21:14 EST 2016. Contains 278745 sequences.