The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060690 a(n) = binomial(2^n + n - 1, n). 29
 1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e., the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416. Row sums of A220886. - Geoffrey Critzer, Nov 20 2014 LINKS Harry J. Smith, Table of n, a(n) for n = 0..59 FORMULA a(n) = [x^n] 1/(1-x)^(2^n). a(n) = (1/n!)*Sum_{k=0..n} ( (-1)^(n-k)*Stirling1(n, k)*2^(k*n) ). - Vladeta Jovovic, May 28 2004 a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008 a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008 G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007 a(n) ~ 2^(n^2) / n!. - Vaclav Kotesovec, Jul 02 2016 MAPLE with(combinat): for n from 1 to 20 do printf(`%d, `, binomial(2^n+n-1, n)) od: MATHEMATICA Table[Binomial[2^n+n-1, n], {n, 0, 20}] (* Harvey P. Dale, Apr 19 2012 *) PROG (PARI) a(n)=binomial(2^n+n-1, n) (PARI) {a(n)=polcoeff(sum(k=0, n, (-log(1-2^k*x +x*O(x^n)))^k/k!), n)} \\ Paul D. Hanna, Dec 29 2007 (PARI) a(n) = sum(k=0, n, stirling(n, k, 1)*(2^n+n-1)^k/n!); \\ Paul D. Hanna, Nov 20 2014 (Sage) [binomial(2^n +n-1, n) for n in (0..20)] # G. C. Greubel, Mar 14 2021 (Magma) [Binomial(2^n +n-1, n): n in [0..20]]; // G. C. Greubel, Mar 14 2021 CROSSREFS Sequences of the form binomial(2^n +p*n +q, n): A136556 (0,-1), A014070 (0,0), A136505 (0,1), A136506 (0,2), this sequence (1,-1), A132683 (1,0), A132684 (1,1), A132685 (2,0), A132686 (2,1), A132687 (3,-1), A132688 (3,0), A132689 (3,1). Cf. A002416, A060336, A088309. Cf. A136555. Sequence in context: A120597 A322295 A256832 * A013038 A005321 A339934 Adjacent sequences: A060687 A060688 A060689 * A060691 A060692 A060693 KEYWORD nonn AUTHOR Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001 EXTENSIONS More terms from James A. Sellers, Apr 20 2001 Edited by N. J. A. Sloane, Mar 17 2008 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 5 09:25 EST 2023. Contains 360084 sequences. (Running on oeis4.)