login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060690 a(n) = C(2^n + n - 1, n). 20
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e. the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416.

Row sums of A220886. - Geoffrey Critzer, Nov 20 2014

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..59

FORMULA

a(n) = [x^n] 1/(1-x)^(2^n).

a(n) = (1/n!)*Sum((-1)^(n-k)*Stirling1(n, k)*2^(k*n), k=0..n). - Vladeta Jovovic, May 28 2004

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008

a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008

G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007

MAPLE

with(combinat): for n from 1 to 20 do printf(`%d, `, binomial(2^n+n-1, n)) od:

MATHEMATICA

Table[Binomial[2^n+n-1, n], {n, 0, 20}] (* Harvey P. Dale, Apr 19 2012 *)

PROG

(PARI) a(n)=binomial(2^n+n-1, n)

(PARI) {a(n)=polcoeff(sum(k=0, n, (-log(1-2^k*x +x*O(x^n)))^k/k!), n)} - Paul D. Hanna, Dec 29 2007

(PARI) { for (n=0, 59, write("b060690.txt", n, " ", binomial(2^n + n - 1, n)); ) } [From Harry J. Smith, Jul 09 2009]

(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}

{a(n) = sum(k=0, n, Stirling1(n, k)*(2^n+n-1)^k/n! )}

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 20 2014

CROSSREFS

Cf. A002416, A060336, A088309, A132683, A132684.

Sequence in context: A110951 A172477 A120597 * A005617 A013038 A005321

Adjacent sequences:  A060687 A060688 A060689 * A060691 A060692 A060693

KEYWORD

nonn

AUTHOR

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

EXTENSIONS

More terms from James A. Sellers, Apr 20 2001

Edited by N. J. A. Sloane, Mar 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified March 28 18:22 EDT 2015. Contains 255988 sequences.