login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060690 a(n) = C(2^n + n - 1, n). 20
1, 2, 10, 120, 3876, 376992, 119877472, 131254487936, 509850594887712, 7145544812472168960, 364974894538906616240640, 68409601066028072105113098240, 47312269462735023248040155132636160 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Also the number of n X n (0,1) matrices modulo rows permutation (by symmetry this is the same as the number of (0,1) matrices modulo columns permutation), i.e. the number of equivalence classes where two matrices A and B are equivalent if one of them is the result of permuting the rows of the other. The total number of (0,1) matrices is in sequence A002416.

Row sums of A220886. - Geoffrey Critzer, Nov 20 2014

LINKS

Harry J. Smith, Table of n, a(n) for n = 0..59

FORMULA

a(n) = [x^n] 1/(1-x)^(2^n).

a(n) = (1/n!)*Sum((-1)^(n-k)*Stirling1(n, k)*2^(k*n), k=0..n). - Vladeta Jovovic, May 28 2004

a(n) = Sum_{k=0..n} (-1)^(n-k)*binomial(2^n+n,k) - Vladeta Jovovic, Jan 21 2008

a(n) = Sum_{k=0..n} Stirling1(n,k)*(2^n+n-1)^k/n!. - Vladeta Jovovic, Jan 21 2008

G.f.: A(x) = Sum_{n>=0} [ -log(1 - 2^n*x)]^n / n!. More generally, Sum_{n>=0} [ -log(1 - q^n*x)]^n/n! = Sum_{n>=0} C(q^n+n-1,n)*x^n ; also Sum_{n>=0} log(1 + q^n*x)^n/n! = Sum_{n>=0} C(q^n,n)*x^n. - Paul D. Hanna, Dec 29 2007

MAPLE

with(combinat): for n from 1 to 20 do printf(`%d, `, binomial(2^n+n-1, n)) od:

MATHEMATICA

Table[Binomial[2^n+n-1, n], {n, 0, 20}] (* Harvey P. Dale, Apr 19 2012 *)

PROG

(PARI) a(n)=binomial(2^n+n-1, n)

(PARI) {a(n)=polcoeff(sum(k=0, n, (-log(1-2^k*x +x*O(x^n)))^k/k!), n)} - Paul D. Hanna, Dec 29 2007

(PARI) { for (n=0, 59, write("b060690.txt", n, " ", binomial(2^n + n - 1, n)); ) } [From Harry J. Smith, Jul 09 2009]

(PARI) {Stirling1(n, k)=n!*polcoeff(binomial(x, n), k)}

{a(n) = sum(k=0, n, Stirling1(n, k)*(2^n+n-1)^k/n! )}

for(n=0, 20, print1(a(n), ", ")) \\ Paul D. Hanna, Nov 20 2014

CROSSREFS

Cf. A002416, A060336, A088309, A132683, A132684.

Sequence in context: A110951 A172477 A120597 * A005617 A013038 A005321

Adjacent sequences:  A060687 A060688 A060689 * A060691 A060692 A060693

KEYWORD

nonn,changed

AUTHOR

Ahmed Fares (ahmedfares(AT)my-deja.com), Apr 19 2001

EXTENSIONS

More terms from James A. Sellers, Apr 20 2001

Edited by N. J. A. Sloane, Mar 17 2008

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 19:50 EST 2014. Contains 249865 sequences.