

A060649


Smallest number k==3 (mod 4) such that Q(sqrt(k)) has class number n.


1



3, 15, 23, 39, 47, 87, 71, 95, 199, 119, 167, 231, 191, 215, 239, 399, 383, 335, 311, 455, 431, 591, 647, 695, 479, 551, 983, 831, 887, 671, 719, 791, 839, 1079, 1031, 959, 1487, 1199, 1439, 1271, 1151, 1959, 1847, 1391, 1319, 2615, 3023, 1751, 1511, 1799
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


LINKS

Table of n, a(n) for n=1..50.
Eric Weisstein's World of Mathematics, Class Number.


MATHEMATICA

(* First do <<NumberTheory`NumberTheoryFunctions` *) a=Table[0, {50}]; Do[If[SquareFreeQ[n], c=ClassNumber[ n]; If[c<=50&&a[[c]]==0, a[[c]]=n]], {n, 3, 3200, 4}]; a


CROSSREFS

Cf. A002148, A081319.
Sequence in context: A106403 A225365 A225060 * A009210 A142882 A161467
Adjacent sequences: A060646 A060647 A060648 * A060650 A060651 A060652


KEYWORD

nonn


AUTHOR

Robert G. Wilson v, Apr 17 2001


EXTENSIONS

Edited by Dean Hickerson, Mar 17 2003


STATUS

approved



