login
Bonse sequence: a(n) = minimal j such that n-j+1 < prime(j).
3

%I #24 Aug 09 2022 14:07:09

%S 1,2,2,3,3,3,4,4,4,5,5,5,5,5,6,6,6,7,7,7,7,7,8,8,8,9,9,9,9,9,10,10,10,

%T 10,10,10,10,11,11,11,12,12,12,12,12,12,12,13,13,13,13,13,14,14,14,15,

%U 15,15,15,15,16,16,16,16,16,16,16,17,17,17,17,17,17,17,18,18

%N Bonse sequence: a(n) = minimal j such that n-j+1 < prime(j).

%C For 3<n and any a(n-1)<a(n) use a(n)=a(n+1)=a(n+2) to show prime(j+1)^3 < prime(1)*...*prime(j) for j>5.

%D R. Remak, Archiv d. Math. u. Physik (3) vol. 15 (1908) 186-193

%H Reinhard Zumkeller, <a href="/A060646/b060646.txt">Table of n, a(n) for n = 1..10000</a>

%H H. Bonse, <a href="https://archive.org/stream/archivdermathem31unkngoog#page/n307/mode/2up">Über eine bekannte Eigenshaft der Zahl 30 und ihre Verallgemeinerung</a>, Archiv d. Math. u. Physik (3) vol. 12 (1907) 292-295.

%H H. Rademacher and O. Toeplitz, <a href="http://dx.doi.org/10.1007/978-3-662-36239-6_26">Eine Eigenschaft der Zahl 30</a>, (A property of the number 30), Von Zahlen und Figuren (1930, reprint Springer 1968), ch. 22.

%e For n=5, j=3 gives 5-3+1 = 3 < prime(3) = 5, true; but if j=2 we get 5-2+1 = 4 which is not < prime(2) = 3; hence a(5) = 3.

%e a(75)=18 because 75-18+1=58 < 61=prime(18), but 75-17+1=59=prime(17).

%t Table[j=0; While[j++; n-j+1 >= Prime[j]]; j, {n, 1, 76}] (* _Jean-François Alcover_, Aug 30 2011 *)

%o (Haskell)

%o import Data.List (findIndex)

%o import Data.Maybe (fromJust)

%o a060646 n = (fromJust $ findIndex ((n+1) <) a014688_list) + 1

%o -- _Reinhard Zumkeller_, Sep 16 2011

%o (Python)

%o from sympy import nextprime

%o from itertools import count, islice

%o def agen(): # generator of terms

%o n, pj = 1, 2

%o for j in count(1):

%o while n - j + 1 < pj: yield j; n += 1

%o pj = nextprime(pj)

%o print(list(islice(agen(), 76))) # _Michael S. Branicky_, Aug 09 2022

%Y Cf. A014688.

%K easy,nonn,nice

%O 1,2

%A _Frank Ellermann_, Apr 17 2001