login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060638 Triangle T(n,k) (0 <= k <= n) giving number of edges in the "flip graph" whose nodes are the tilings of the unary zonotope Z(n,k) (the projection onto R^k of a unit cube in R^n) by projections of the k-dimensional faces of the hypercube (again projected onto R^k). 16
0, 1, 0, 4, 1, 0, 12, 6, 1, 0, 32, 36, 8, 1, 0, 80, 240, 100, 10, 1, 0, 192, 1800, 2144, 264, 12, 1, 0, 448, 15120, 80360, 22624, 672, 14, 1, 0, 1024, 141120 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,4

REFERENCES

A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999

Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

LINKS

Table of n, a(n) for n=0..37.

N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.

N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.

M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices

EXAMPLE

   0

   1 0

   4 1 0

  12 6 1 0

  ...

CROSSREFS

Diagonals give A001787, A001286, A060570, A060608, A060612, A060614, A060616-A060619, A060621-A060624. Cf. A060637.

Sequence in context: A211793 A145880 A048516 * A244125 A007789 A081114

Adjacent sequences:  A060635 A060636 A060637 * A060639 A060640 A060641

KEYWORD

nonn,tabl,hard,more,nice

AUTHOR

N. J. A. Sloane, Apr 16 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 18 16:59 EDT 2018. Contains 316323 sequences. (Running on oeis4.)