login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060616 Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=6 and D varies. 1

%I

%S 0,1,16,4032

%N Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=6 and D varies.

%D A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.

%D N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.

%D Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

%H M. Latapy, <a href="https://arxiv.org/abs/math/0008022">Generalized Integer Partitions, Tilings of Zonotopes and Lattices</a>

%e For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.

%Y Cf. A001286 (case where d=1). Cf. A060595 (number of 3-tilings) for terminology. A diagonal of A060638.

%K nonn

%O 6,3

%A Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 17 10:59 EST 2019. Contains 320219 sequences. (Running on oeis4.)