login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060616 Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=6 and D varies. 1
0, 1, 16, 4032 (list; graph; refs; listen; history; text; internal format)
OFFSET

6,3

REFERENCES

A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.

N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.

Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.

LINKS

Table of n, a(n) for n=6..9.

M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices

EXAMPLE

For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.

CROSSREFS

Cf. A001286 (case where d=1). Cf. A060595 (number of 3-tilings) for terminology. A diagonal of A060638.

Sequence in context: A217021 A087519 A222917 * A297387 A016936 A321242

Adjacent sequences:  A060613 A060614 A060615 * A060617 A060618 A060619

KEYWORD

nonn

AUTHOR

Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 18 21:04 EST 2018. Contains 317331 sequences. (Running on oeis4.)