login
A060598
Number of tilings of the 7-dimensional zonotope constructed from D vectors.
1
1, 2, 18, 3564, 393454160, 24410990062379593896
OFFSET
7,2
COMMENTS
The zonotope Z(D,d) is the projection of the D-dimensional hypercube onto the d-dimensional space and the tiles are the projections of the d-dimensional faces of the hypercube. Here d=7 and D varies.
Also the number of signotopes of rank 8. A signotope of rank r is a mapping X:{{1..n} choose r}->{+,-} such that for any r+1 indices I={i_0,...,i_r} with i_0 < i_1 < ... < i_r, the sequence X(I-i_0), X(I-i_1), ..., X(I-i_r) changes its sign at most once (see Felsner-Weil reference). - Manfred Scheucher, Feb 09 2022
REFERENCES
A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G.M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46 Second Edition, Cambridge University Press, 1999.
Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.
LINKS
N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, arXiv:cond-mat/0004145 [cond-mat.stat-mech], 2000.
N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.
S. Felsner and H. Weil, Sweeps, arrangements and signotopes, Discrete Applied Mathematics, Volume 109, Issues 1-2, 2001, Pages 67-94.
M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices, arXiv:math/0008022 [math.CO], 2000.
Manfred Scheucher, C++ program for enumeration.
G. M. Ziegler, Higher Bruhat Orders and Cyclic Hyperplane Arrangements, Topology, Volume 32, 1993.
FORMULA
Asymptotics: a(n) = 2^(Theta(n^7)). This is Bachmann-Landau notation, that is, there are constants n_0, c, and d, such that for every n >= n_0 the inequality 2^{c n^7} <= a(n) <= 2^{d n^7} is satisfied. - Manfred Scheucher, Sep 22 2021
EXAMPLE
For any d, the only possible tile for Z(d,d) is Z(d,d) itself, therefore the first term of the series is 1. It is well known that there are always two d-tilings of Z(d+1,d), therefore the second term is 2. More examples are available on my web page.
CROSSREFS
Cf. A006245 (two-dimensional tilings), A060595-A060602.
Column k=7 of A060637.
Sequence in context: A076954 A206847 A259654 * A055687 A006262 A003043
KEYWORD
nonn,nice
AUTHOR
Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 12 2001
EXTENSIONS
a(11) from Manfred Scheucher, Sep 22 2021
Edited by Manfred Scheucher, Mar 08 2022
a(12) from Manfred Scheucher, Jul 17 2023
STATUS
approved