This site is supported by donations to The OEIS Foundation.



(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A060570 Number of flips between the d-dimensional tilings of the unary zonotope Z(D,d). Here d=2 and D varies. 2
0, 1, 8, 100, 2144, 80360 (list; graph; refs; listen; history; text; internal format)



A. Bjorner, M. Las Vergnas, B. Sturmfels, N. White and G. M. Ziegler, Oriented Matroids, Encyclopedia of Mathematics 46, Second Edition, Cambridge University Press, 1999.

N. Destainville, R. Mosseri and F. Bailly, Fixed-boundary octagonal random tilings: a combinatorial approach, Journal of Statistical Physics, 102 (2001), no. 1-2, 147-190.

Victor Reiner, The generalized Baues problem, in New Perspectives in Algebraic Combinatorics (Berkeley, CA, 1996-1997), 293-336, Math. Sci. Res. Inst. Publ., 38, Cambridge Univ. Press, Cambridge, 1999.


Table of n, a(n) for n=2..7.

M. Latapy, Generalized Integer Partitions, Tilings of Zonotopes and Lattices


For any Z(d,d), there is a unique tiling therefore the first term of the series is 0. Likewise, there are always two tilings of Z(d+1,d) with a flip between them, therefore the second term of the series is 1.


Cf. A001286 (case where d=1), A006245 (number of 2-tilings). Cf. A060595 (number of 3-tilings) for terminology. A diagonal of A060638.

Sequence in context: A306032 A274844 A302944 * A215875 A317598 A238947

Adjacent sequences:  A060567 A060568 A060569 * A060571 A060572 A060573




Matthieu Latapy (latapy(AT)liafa.jussieu.fr), Apr 13 2001



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified November 16 17:39 EST 2018. Contains 317275 sequences. (Running on oeis4.)