This site is supported by donations to The OEIS Foundation.

"Email this user" was broken Aug 14 to 9am Aug 16. If you sent someone a message in this period, please send it again.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060552 a(n) is the number of distinct (modulo geometric D3-operations) nonsymmetric (no reflective nor rotational symmetry) patterns which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells. 1

%I

%S 0,0,0,1,2,7,14,35,70,154,310,650,1300,2666,5332,10788,21588,43428,

%T 86856,174244,348488,697992,1396040,2794120,5588240,11180680,22361360,

%U 44730896,89462032,178940432,357880864,715794960

%N a(n) is the number of distinct (modulo geometric D3-operations) nonsymmetric (no reflective nor rotational symmetry) patterns which can be formed by an equilateral triangular arrangement of closely packed black and white cells satisfying the local matching rule of Pascal's triangle modulo 2, where n is the number of cells in each edge of the arrangement. The matching rule is such that any elementary top-down triangle of three neighboring cells in the arrangement contains either one or three white cells.

%H Harry J. Smith, <a href="/A060552/b060552.txt">Table of n, a(n) for n=1..500</a>

%H A. Barbé, <a href="http://dx.doi.org/10.1016/S0166-218X(00)00211-0">Symmetric patterns in the cellular automaton that generates Pascal's triangle modulo 2</a>, Discr. Appl. Math. 105(2000), 1-38.

%H <a href="/index/Ce#cell">Index entries for sequences related to cellular automata</a>

%F a(n) = (2^(n-1) - 2^(floor(n/3) + (n mod 3)mod 2 - 1))/3 + 2^(floor((n+3)/6) + d(n) - 1) - 2^floor((n-1)/2), with d(n)=1 if n mod 6=1 else d(n)=0.

%F a(n) = (A000079(n-1) - A060547(n)/2)/3 + A060548(n)/2 -A060546(n)/2.

%F a(n) = (A000079(n-1) - 2^(A008611(n-1) - 1))/3 + 2^(A008615(n+1) - 1) - 2^(A008619(n-1) - 1), n >= 1.

%F From _R. J. Mathar_, Aug 03 2009: (Start)

%F a(n) = 2*a(n-1) + 2*a(n-2) - 2*a(n-3) - 4*a(n-4) - 4*a(n-5) + 10*a(n-6) - 4*a(n-7) - 4*a(n-8) + 4*a(n-9) + 8*a(n-10) + 8*a(n-11) - 16*a(n-12).

%F G.f.: -x^4*(-1 - x^2 - x^4 + 2*x^3 + 2*x^5 + 2*x^6)/((2*x-1)*(2*x^2-1)*(2*x^3-1)*(2*x^6-1)). (End)

%o (PARI) { for (n=1, 500, a=(2^(n-1)-2^(floor(n/3)+(n%3)%2-1))/3+2^(floor((n+3)/6)+(n%6==1)-1)-2^floor((n-1)/2); write("b060552.txt", n, " ", a); ) } \\ _Harry J. Smith_, Jul 07 2009

%Y Cf. A000079, A060547, A060548, A060546, A060552, A008611, A008615, A008619.

%K easy,nonn

%O 1,5

%A André Barbé (Andre.Barbe(AT)esat.kuleuven.ac.be), Apr 03 2001

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.