This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060510 Alternating with hexagonal stutters: if n is hexagonal (2k^2-k i.e. A000384) then a(n)=a(n-1), otherwise a(n)=1-a(n-1). 3
 0, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1 (list; table; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 LINKS FORMULA a(n) =A002262(n) mod 2 =A060511(n) mod 2. EXAMPLE Hexagonal numbers start 1,6,15, ... so this sequence goes 0 0 (stutter at 1) 1 0 1 0 0 (stutter at 6) 1 0 1 0 1 0 1 0 0 (stutter at 15) 1 0 etc. CROSSREFS As a simple triangular or square array virtually the only sequences which appear are A000004, A000012 and A000035. Sequence in context: A120325 A144598 A144606 * A072629 A164292 A151763 Adjacent sequences:  A060507 A060508 A060509 * A060511 A060512 A060513 KEYWORD easy,nonn,tabl AUTHOR Henry Bottomley, Mar 22 2001 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .