login

Reminder: The OEIS is hiring a new managing editor, and the application deadline is January 26.

Primes p that have a primitive root between 0 and p that is not a primitive root of p^2.
8

%I #34 Nov 26 2022 16:56:17

%S 2,29,37,43,71,103,109,113,131,181,191,211,257,263,269,283,349,353,

%T 359,367,373,397,439,449,461,487,509,563,599,617,619,631,641,647,653,

%U 701,739,743,773,797,839,857,863,883,887,907,919,947,971,983,1019,1031

%N Primes p that have a primitive root between 0 and p that is not a primitive root of p^2.

%C The smallest primitive roots of p that are not primitive roots of p^2 are in A060504.

%C Except for the initial term 2, this is a subsequence of A134307. - _Jeppe Stig Nielsen_, Jul 31 2015

%H Robert Israel, <a href="/A060503/b060503.txt">Table of n, a(n) for n = 1..1000</a>

%e 14 is a primitive root of 29 but not of 29^2, so 29 is a term.

%p filter:= proc(p) local x;

%p if not isprime(p) then return false fi;

%p x:= 0;

%p do

%p x:= numtheory:-primroot(x,p);

%p if x = FAIL then return false fi;

%p if x &^ (p-1) mod p^2 = 1 then return true fi;

%p od

%p end proc:

%p select(filter, [2, seq(i,i=3..2000,2)]); # _Robert Israel_, Dec 01 2016

%t Reap[For[p = 2, p < 1100, p = NextPrime[p], prp = PrimitiveRootList[p]; prp2 = Select[PrimitiveRootList[p^2], # <= Last[prp]&]; If[AnyTrue[prp, FreeQ[prp2, #]&], Print[p]; Sow[p]]]][[2, 1]] (* _Jean-François Alcover_, Feb 26 2019 *)

%o (PARI) forprime(p=2,,for(a=1,p-1,if(znorder(Mod(a,p))==p-1&Mod(a,p^2)^(p-1)==1,print1(p,", ");break()))) \\ _Jeppe Stig Nielsen_, Jul 31 2015

%Y Cf. A055578, A060504, A134307.

%K nonn

%O 1,1

%A _Jud McCranie_, Mar 22 2001