OFFSET
3,2
COMMENTS
A covering of a set is a tricovering if every element of the set is covered by exactly three blocks of the covering.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 3..200
Index entries for linear recurrences with constant coefficients, signature (45,-720,5220,-17664,25920,-12800).
FORMULA
a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240).
E.g.f. for k-block tricoverings of an n-set is exp(-x+x^2/2+(exp(y)-1)*x^3/3)*Sum_{k=0..inf}x^k/k!*exp(-1/2*x^2*exp(k*y))*exp(binomial(k, 3)*y).
G.f.: -x^3*(800*x^3+448*x^2-50*x-1) / ((x-1)*(2*x-1)*(4*x-1)*(8*x-1)*(10*x-1)*(20*x-1)). - Colin Barker, Jan 12 2013
a(n) = 45*a(n-1)-720*a(n-2)+5220*a(n-3)-17664*a(n-4)+25920*a(n-5)-12800*a(n-6). - Wesley Ivan Hurt, Oct 18 2021
MATHEMATICA
With[{c=1/6!}, Table[c(20^n-6*10^n-15*8^n+135*4^n-310*2^n+240), {n, 3, 20}]] (* or *) LinearRecurrence[{45, -720, 5220, -17664, 25920, -12800}, {1, 95, 3107, 75835, 1653771, 34384875}, 20] (* Harvey P. Dale, Jan 05 2017 *)
PROG
(PARI) a(n) = (1/6!)*(20^n - 6*10^n - 15*8^n + 135*4^n - 310*2^n + 240) \\ Andrew Howroyd, Dec 15 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Mar 20 2001
STATUS
approved