%I #13 Nov 23 2022 15:31:50
%S 1,0,2,1,6,0,18,10,56,31,186,37,630,381,2182,1360,7710,511,27594,
%T 17459,99858,63457,364722,77650,1342176,860055,4971008,3195465,
%U 18512790,3975719,69273666,44738560,260300986,168426235,981706806,70698768,3714566310,2411195913
%N Number of orbits of length n in map whose periodic points come from A059990.
%D V. Chothi, G. Everest, T. Ward. S-integer dynamical systems: periodic points. J. Reine Angew. Math., 489 (1997), 99-132.
%D T. Ward. Almost all S-integer dynamical systems have many periodic points. Erg. Th. Dynam. Sys. 18 (1998), 471-486.
%H A. Pakapongpun, T. Ward, <a href="https://cs.uwaterloo.ca/journals/JIS/VOL12/Ward/ward17.html">Functorial Orbit counting</a>, JIS 12 (2009) 09.2.4, example 27.
%H Y. Puri and T. Ward, <a href="http://www.cs.uwaterloo.ca/journals/JIS/VOL4/WARD/short.html">Arithmetic and growth of periodic orbits</a>, J. Integer Seqs., Vol. 4 (2001), #01.2.1.
%F If b(n) is the n-th term of A059990, then a(n) = (1/n)* Sum_{ d divides n } mu(d) * b(n/d).
%Y Cf. A059990.
%K easy,nonn
%O 1,3
%A _Thomas Ward_
%E More terms from _Sean A. Irvine_, Nov 23 2022