%I #7 Mar 25 2015 16:28:34
%S 1,6,38,107,350,728,1752,3090,6215,9878,17654,26117,42924,60256,93024,
%T 125460,184509,241110,341110,434511,595562,742808,991640,1215110,
%U 1586403,1914822,2452646,2922185,3681560,4337024,5385600,6281704,7701561,8904294,10793862,12381939,14822755,16907891,19221332,21781332,24607093,27718789,31137590
%N Consider the line segment in R^n from the origin to the point v = (1,4,9,...,n^2); let d = squared distance to this line from the closest point of Z^n (excluding the endpoints). Sequence gives d times v.v.
%C v.v is given by A000538(n).
%C Officially these are just conjectures so far.
%H N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, <a href="http://neilsloane.com/doc/Exists.pdf">Fat Struts: Constructions and a Bound</a>, Proceedings Information Theory Workshop, Taormino, Italy, 2009. [<a href="/A047896/a047896.pdf">Cached copy</a>]
%H N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, <a href="http://neilsloane.com/doc/FATS.pdf">A Note on Projecting the Cubic Lattice</a>, Discrete and Computational Geometry, Vol. 46 (No. 3, 2011), 472-478.
%H N. J. A. Sloane, Vinay A. Vaishampayan and Sueli I. R. Costa, <a href="http://neilsloane.com/doc/main_fat_strut.pdf">The Lifting Construction: A General Solution to the Fat Strut Problem</a>, Proceedings International Symposium on Information Theory (ISIT), 2010, IEEE Press. [<a href="/A047896/a047896_1.pdf">Cached copy</a>]
%F For n<=37, a(n) = A060452(n); for n >= 38, a(n) = A000538(n-1).
%Y Cf. A059804.
%K nonn
%O 0,2
%A _N. J. A. Sloane_, Apr 09 2001