

A060450


Triangle T(n,k) (1 <= k <= n) giving smallest covering radius of any [n,k] binary linear code.


1



0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 2, 2, 1, 1, 0, 3, 2, 2, 1, 1, 0, 3, 3, 2, 1, 1, 1, 0, 4, 3, 3, 2, 1, 1, 1, 0, 4, 4, 3, 2, 2, 1, 1, 1, 0, 5, 4, 4, 3, 2, 2, 1, 1, 1, 0, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 0, 6, 5, 5, 4, 3, 3, 2, 2, 1, 1, 1, 0, 6, 6, 5, 4, 4, 3, 2, 2, 2, 1, 1, 1, 0, 7, 6, 6, 5, 4, 3, 3, 2, 2, 2, 1, 1, 1, 0
(list;
table;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,7


REFERENCES

G. D. Cohen et al., Covering Codes, NorthHolland, 1997, p. 193.
R. L. Graham and N. J. A. Sloane, On the covering radius of codes, IEEE Trans. Information Theory, 51 (1985), 385401.


LINKS

Table of n, a(n) for n=1..105.
Index entries for sequences related to covering codes


EXAMPLE

0; 1,0; 1,1,0; 2,1,1,0; 2,2,1,1,0; ...


CROSSREFS

Cf. A060451.
Sequence in context: A101979 A308061 A060582 * A180918 A152146 A025860
Adjacent sequences: A060447 A060448 A060449 * A060451 A060452 A060453


KEYWORD

nonn,tabl,nice


AUTHOR

N. J. A. Sloane, Apr 08 2001


STATUS

approved



