login
Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), without repetition.
10

%I #31 Apr 18 2024 09:33:48

%S 0,1,3,7,3,5,31,3,7,127,3,5,17,7,73,3,11,31,23,89,3,5,7,13,8191,3,43,

%T 127,7,31,151,3,5,17,257,131071,3,7,19,73,524287,3,5,11,31,41,7,127,

%U 337,3,23,89,683,47,178481,3,5,7,13,17,241

%N Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), without repetition.

%C For n > 1, the length of row n is A046800(n). - _T. D. Noe_, Aug 06 2007

%D J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.

%H T. D. Noe, <a href="/A060443/b060443.txt">Rows n=0..500 of triangle, flattened</a> (derived from Brillhart et al.)

%H Joerg Arndt, <a href="/A001265/a001265.txt">Rows n=1..1200 of triangle when repetitions are included</a> (derived from Brillhart et al.)

%H J. Brillhart et al., <a href="http://dx.doi.org/10.1090/conm/022">Factorizations of b^n +- 1</a>, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.

%H Jeroen Demeyer, <a href="http://cage.ugent.be/~jdemeyer/cunningham/">Machine-readable Cunningham Tables</a> [Broken link]

%H S. S. Wagstaff, Jr., <a href="http://www.cerias.purdue.edu/homes/ssw/cun/index.html">The Cunningham Project</a>

%H Chai Wah Wu, <a href="https://github.com/postvakje/Reformatted-Cunningham-Project-tables">Tables from the Cunningham Project in machine-readable JSON format.</a>

%e From _Wolfdieter Lang_, Sep 23 2017: (Start)

%e The irregular triangle T(n,k) begins for n >= 2:

%e n\k 1 2 3 4 5

%e 2: 3

%e 3: 7

%e 4: 3 5

%e 5: 31

%e 6: 3 7

%e 7: 127

%e 8: 3 5 17

%e 9: 7 73

%e 10: 3 11 31

%e 11: 23 89

%e 12: 3 5 7 13

%e 13: 8191

%e 14: 3 43 127

%e 15: 7 31 151

%e 16: 3 5 17 257

%e 17: 131071

%e 18: 3 7 19 73

%e 19: 524287

%e 20: 3 5 11 31 41

%e ... (End)

%t Array[FactorInteger[2^# - 1][[All, 1]] &, 25, 0] (* _Paolo Xausa_, Apr 18 2024 *)

%Y Cf. A001265, A064078.

%K nonn,tabf

%O 0,3

%A _N. J. A. Sloane_