The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A060432 Partial sums of A002024. 13
 1, 3, 5, 8, 11, 14, 18, 22, 26, 30, 35, 40, 45, 50, 55, 61, 67, 73, 79, 85, 91, 98, 105, 112, 119, 126, 133, 140, 148, 156, 164, 172, 180, 188, 196, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 295, 305, 315, 325, 335, 345, 355, 365, 375, 385, 396, 407, 418 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS In other words, first differences give A002024. Equals A010054 convolved with [1, 2, 3,...]. [Gary W. Adamson, Mar 16 2010] LINKS Harry J. Smith, Table of n, a(n) for n=1..1000 Gorka Zamora-López, Romain Brasselet, Sizing the length of complex networks, arXiv:1810.12825 [physics.soc-ph], 2018. FORMULA Let f(n) = floor(1/2 + sqrt(2*n)), then this function is S(n) = f(1) + f(2) + f(3) + ... + f(n). a(n) is asymptotic to c*n^(3/2) with c=0.9428.... - Benoit Cloitre, Dec 18 2002 a(n) is asymptotic to c*n^{3/2} with c = (2/3)*sqrt(2) = .942809.... - Franklin T. Adams-Watters, Sep 07 2006 Set R = round(sqrt(2*n),0), then a(n) = ((6*n+1)*R-R^3)/6. [Gerald Hillier, Nov 28 2008] G.f.: W(0)/(2*(1-x)^2) , where W(k) = 1 + 1/( 1 - x^(k+1)/( x^(k+1) + 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 21 2013 a(n) = A000330(A003056(n)) + (A003056(n) + 1) * (n - A057944(n)). This represents a closed form, because all of the constituent sequences (i.e. A003056, A000330, A057944) have a known closed form. - Peter Kagey, Jan 28 2016 G.f.: x^(7/8)*Theta_2(0,x^(1/2))/(2*(1-x)^2) where Theta_2 is a Jacobi theta function. - Robert Israel, Jan 28 2016 G.f.: (x/(1 - x)^2)*Product_{k>=1} (1 - x^(2*k))/(1 - x^(2*k-1)). - Ilya Gutkovskiy, May 30 2017 EXAMPLE a(7) = 1 + 2 + 2 + 3 + 3 + 3 + 4 = 18. MAPLE ListTools:-PartialSums([seq(n\$n, n=1..10)]); # Robert Israel, Jan 28 2016 MATHEMATICA a[n_] := Sum[Floor[1/2 + Sqrt[2*k]], {k, 1, n}]; Array[a, 60] (* Jean-François Alcover, Jan 10 2016 *) PROG (PARI) f(n) = floor(1/2+sqrt(2*n)) for(n=1, 100, print1(sum(k=1, n, f(k)), ", ")) (PARI) { default(realprecision, 100); for (n=1, 1000, a=sum(k=1, n, floor(1/2 + sqrt(2*k))); write("b060432.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 05 2009 (Haskell) a060432 n = sum \$ zipWith (*) [n, n-1..1] a010054_list -- Reinhard Zumkeller, Dec 17 2011 CROSSREFS Cf. A002024, A006463, A010054. Sequence in context: A076372 A248611 A005356 * A156023 A261223 A062009 Adjacent sequences:  A060429 A060430 A060431 * A060433 A060434 A060435 KEYWORD easy,nonn AUTHOR Robert A. Stump (bobess(AT)netzero.net), Apr 06 2001 EXTENSIONS More terms from Jason Earls, Jan 08 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 13 02:52 EDT 2020. Contains 336441 sequences. (Running on oeis4.)